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Abstract—As one technique for autonomous driving, vehic-
ular networks can achieve high efficiency with vehicle-and-
infrastructure cooperation, bringing high safety and many value-
added services. To achieve higher communication efficiency,
much effort has been done to cope with the resource allocation
issues for vehicular networks. Nevertheless, due to the strong
nonconvexity and nonlinearity, the classical joint resource allo-
cation problem in vehicular networks is typically NP-hard. The
multiagent reinforcement learning (MARL) has emerged as a
promising solution to tackle this challenge but its stability and
scalability are not satisfactory when the amount of vehicles gets
increased. In this article, we mainly investigate the issue of
joint spectrum and power allocation in vehicular communica-
tion networks, and carefully consider the interactions between
the vehicles and environment by incorporating the coopera-
tive stochastic game theory with MARL, named complete-game
MARL (CG-MARL), to achieve a better convergence and stabil-
ity with the theoretical computational complexity O(nN) with n
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denoting the dimension of action space and N denoting the num-
ber of V2X Vehicular. Furthermore, the mean-field game (MFG)
theory is employed to further enhance the MARL for decreasing
the horrible computing resource consumption caused by the CG-
MARL to O(n2) while maintaining an approximate performance.
The simulation results demonstrate that the proposed mean-
field-aided MARL (MF-MARL) for vehicular network resource
allocation can achieve 95% near-optimal performance with much
lower complexity, which indicates its significant potentials in the
scenarios with massive and dense vehicles.

Index Terms—Joint resource allocation, mean-field game
(MFG) theory, multiagent reinforcement learning (MARL),
vehicular networks.

I. INTRODUCTION

VEHICLE-TO-EVERYTHING (V2X) communications
have attracted tremendous interests over the past few

years since the cooperation among vehicles and access points
can bring a series of advanced services, such as high traffic
safety and fuel efficiency, improved infrastructure utilization,
and autonomous driving [1], [2]. Nevertheless, the realization
of these services requires an ultrahighly reliable transmis-
sion of data among communication devices in the whole
V2X system [3]. To adequately utilize the communication
resources referred in the third partnership project (3GPP), such
as power [4], spectrum [5], time slots [6], beams [7], etc., the
resource allocation scheme needs to be designed in a careful
manner [8], [9].

Although those traditional methods, such as integer linear
(or nonlinear) programming [10], [11], [12], graph theoreti-
cal approach [13], greedy scheme [14], simulated annealing
method [15], [16], etc., from the classic operations research
(OR) field have tried to solve the resource allocation problems
from different perspectives, the drawbacks of these approaches
are also obvious. For instance, since the objective functions
of these V2X models are either nonconvex or NP-hard, the
algorithms for obtaining the solution need to be iteratively
designed, which makes the computational complexity very
high [11]. In addition, these conventional approaches rely
heavily on the V2X communication network model [12], and
the global channel state information (CSI) in the environment
is difficult to collect precisely [15], [17]. Hence, the imple-
mentations of these methods are constrained to a few V2X
scenarios. In those environments with complex requirements,
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the performances of these approaches are not as good as
expected.

Beyond those traditional approaches above, the machine
learning methods, especially the reinforcement learning (RL)
approaches, have provided a promising way toward addressing
these long-standing and troublesome optimization problems
due to their advanced capabilities in making decisions, espe-
cially over those dynamic scenarios under uncertainty [18].
That is why and when we are inspired by the RL approaches
and intend to use such techniques to revisit these “old but clas-
sic” resource allocation problems in V2X networks. RL has
demonstrated the superiority and potential in addressing the
NP-hard and nonconvex problems [19] and, hence, been natu-
rally deployed in the vehicular communication network [20].
Yet, to deploy the RL algorithm, the communication network
needs to be established as a centralized system with the
global information [21], which might not be feasible in real-
ity anyway [22]. Accordingly, for coping with the physical
conditions where the agents can only observe and collect the
local information, the idea of utilizing the distributed RL,
i.e., multiagent RL (MARL), has been proposed. For instance,
Liang et al. [23] treated each V2V link as an agent and mod-
eled a multiagent communication system in a distributed man-
ner. Afterward, for maximizing the vehicle-to-infrastructure
(V2I) sum-rate while still meeting the probability requirement,
Vu et al. employed the double deep Q-learning method to
deal with the assignment of both spectrum and power [24].
Nevertheless, due to the lack of consideration in the strategical
interactions among vehicle or link agents in the environment,
the learning quality and stability of the MARL system is lim-
ited, especially when the number of agents goes up. In this
work, by taking into consideration that the interactions among
these agents in the networks and the strategies of agents can be
affected by each other [25], [26], we first integrate the stochas-
tic game theory into the MARL system and rebuild it as a game
process with complete information, namely, complete-game
MARL (CG-MARL), to investigate how the MARL with game
formulation will perform in the issue of joint V2X resource
allocation. Besides, since the interactions among agents in
N-player game become exponentially complicated with the
increased agents [27], the mean-field game (MFG) theory is
then introduced to MARL to reduce the complexity of the
interactions as well as the computation while still maintaining
the approximate performance to CG-MARL, which indicates
its huge potentials in the scenarios with massive and dense
vehicles.

The main contributions of this work are summarized as
follows.

1) A specifically designed V2X resource allocation scheme
in assigning joint spectrum and power is established as
an MARL formulation and three different MARL proto-
cols (two enhanced MARL method compared with one
classic MARL) are designed to solve the optimization
issue of system capacity over the V2X communication
network.

2) To enhance the classic MARL, we reconsider the
interaction mechanism among agents and combine the
cooperative stochastic game theory with MARL to

Fig. 1. Schematic of V2X communication networks.

improve the cooperation in the whole system. Herein,
the complete information is shared in this N-player game
and the Nash Q-learning [26] is introduced to update
the strategies of agents based on assuming the Nash
Equilibrium (NE) behaviors over the current Q-values,
which has been mathematically proven to converge
under certain restrictions.

3) In consideration of the exponential increment of the
computing resource consumption in terms of the amount
of agents in an N-player stochastic game, which makes
the large-scale implementation of the vehicular network
nearly impossible, we propose an enhanced MARL
protocol, i.e., mean-field-aided MARL (MF-MARL)
approach, to reduce the horrible computational com-
plexity of CG-MARL from O(nN) to O(n2) while
still maintaining a relatively high approximation on the
general performance of the system capacity.

We structure the remainder of this article as follows. In
Section II, an evaluation scheme for measuring V2X commu-
nication capacity is proposed and the V2V network system
is established as a multiagent system with the RL approach.
In Section III, we integrate the stochastic game theory into
the above original MARL method and afterward keep upgrad-
ing it with the MFG theory. Moreover, the comparison of
three different MARL algorithms is analyzed. In Section IV,
the simulation experiments with all MARL algorithms men-
tioned above are deployed and the corresponding results are
discussed. Finally, conclusion remarks are summarized in
Section V.

II. SYSTEM MODEL FOR MARL V2X NETWORKS

In this section, we consider a V2X communication network
model consisting of V2I and V2V links, and then incorporate
it into the MARL framework where the joint spectrum and
power allocation task is performed. The summary of notation
of the whole article is represented in Table II.

A. Capacity Evaluation of the Networks

As illustrated in Fig. 1, we suppose there exists a single-cell
V2X communication network with K V2I and N V2V links,
where V2I links denote the links between K vehicles and the
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TABLE I
KEY NOTATIONS

base station (BS), while V2V links are employed to support
the communications between two individual vehicles.

Both V2I links and V2V links share the same orthogonal
spectrum with K sub-bands for the sake of spectral effi-
ciency. In addition, we assume the sub-bands of V2I links are
preassigned and there is no interference between V2I links.
According to the definition of the signal-to-interference-plus-
noise ratios (SINRs) [23], for the kth spectrum, the SINR
indices of the kth V2I link and the ith V2V link can be
described as

γ c
k [k] = φc

k ĝk,B[k]
∑

i 1(ai = k)φd
i [k]gi,B[k] + σ 2

(1)

and

γ d
i [k] = φd

i [k]gi[k]

Pi[k] + σ 2
(2)

where the indicator function 1(ai = k) means the ith V2V
link selects the kth spectrum for the payload transmission.
In particular, the access for all V2V links is supposed to
be less than one band, i.e.,

∑
k 1(ai = k) ≤ 1, for all

i = 1, 2, . . . , N. φc
k and φd

i [k] correspondingly represent
the transmit powers of the kth V2I link and the ith V2V
link over the kth spectrum, and σ 2 is the noise power. The
interfering channel power gain between the kth V2I transmit-
ter and the BS over the kth spectrum ĝk,B[k] is defined as
ĝk,B[k] = αk,Bĥk,B[k], where αk,B describes the large-scale
fading effect and ĥk,B[k] denotes the fast-fading depending

on the frequency of the spectrum. gi,B[k] and gi[k] are the
channel gain between the ith V2I transmitter and the BS and
the channel gain of the ith V2V link over the kth band, respec-
tively, and similarly defined with ĝk,B[k]. The interference
power of the ith V2V link over the kth spectrum Pi[k] is
presented as Pi[k] = φc

k ĝk,i[k] + ∑
j �=i 1(aj = k)φd

j [k]gj,i[k],
where ĝk,i[k] and gj,i[k] denote the interfering channel power
gain between the kth V2I transmitter and the ith V2V receiver
and the interfering channel power gain between the jth V2V
transmitter and the ith V2V receiver over the kth spectrum,
respectively.

We furthermore describe the capacity of the kth V2I link
over the kth spectrum as Cc

k[k] = W log(1 + γ c
k [k]) and, sim-

ilarly, the capacity of the ith V2V link can be presented as
Cd

i [k] = W log(1 + γ d
i [k]), where W denotes the bandwidth

of each spectrum. Both sum capacities of the V2I and V2V
links are utilized to evaluate the efficiency of the multiagent
communication network η, i.e.,

η = ωc

∑

k

Cc
k[k] + ωd

∑

i

Cd
i [k] (3)

where ωc and ωd are two hyperparameters to equilibrate the
total capacities of V2I and V2I links in the network.

Subsequently, in consideration of the requirement for the
instant message delivery, the average V2V transmission rate
for the message delivery among the communication network
was established to measure the whole performance of the
multiagent system given by

R̄ = 1

N

∑

i

Bi

Ti
(4)

where Ti is the time spent by V2V agent i for transmitting
the message payload and Bi represents the size of the payload
that agent i needs to deliver.

B. MARL for Joint Spectrum and Power Allocation

For obtaining the maximum total capacities of the com-
munication networks mentioned above, we first establish the
scenario of joint spectrum and power allocation as an MARL
system with the Markov decision process (MDP), which is
depicted as Fig. 2, in which each V2V link is treated as an
individual agent with its own decision-making policy. Through
continually interacting with the V2X environment, each agent
will receive a series of rewards from the environment based
on the actions that they take, which represent the qualities
of their policies. Meanwhile, the environment evolves with
the actions from the agents. Since the other agents are also
observed as a portion of the environment, each agent needs
to ceaselessly update and optimize their strategies against the
environment according to the so-called reward-oriented expe-
riences. Considering each V2V agent may perform to compete
against other agents for higher capacity in the multiagent
system, we set up the same reward in this MARL scenario
to encourage cooperative behaviors.

1) Environment State: As mentioned above, the evolution
of the communication environment is established as a dis-
crete MDP, where each agent i, representing each V2V link,
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Fig. 2. MDP in RL for the V2X network.

collectively explores and interacts with the unknown V2X
communication environment. For handling the issue in which
joint spectrum and power need to be appropriately allocated,
we include all conditions of the spectrum occupied by V2I
and V2V links, all interference caused by all behaviors of
agents in the environment state st. At each time step t, each
V2V agent i needs to perform an observation onto the current
environment state st, and then selects an action ai

t from its
own action space Ai based on what it has observed. After all
agents executing so, the environment will immediately react
to all actions and hand out the rewards, which then leads the
environment to evolve from the current state st to the next
state st+1 with probability p(st+1|st, at).

2) Observation Space: In this decentralized multiagent
system, each agent can only observe the local conditions of the
whole environment. The observation of the environment for
agent i at the tth time step Oi

t is hence determined by the obser-
vation function O(st, i) = {Bt

i, Tt
i , {Pt

i[k]}K
k=1, {Xt

i [k]}K
k=1},

where Xi[k] = {gi[k], gi,i′ [k], gi,B[k], gk,i[k]}. Furthermore, to
efficiently help the agents explore the environment with a
relatively high exploration rate while maintaining the con-
vergence [28], we adopt the ε-greedy policy and update the
observation of the environment as

Zi
t = {O(st, i), ε, t} (5)

where ε ∈ [0, 1) represents the probability of choosing a joint
action randomly.

3) Action Space: Action space stipulates the boundary of a
series of actions that the agent or player can execute to inter-
act with the environment [29]. In the vehicular networks, we
consider the specific spectrum and power as the action space
for each individual agent. In most existing literature of spec-
trum selection and power control, each V2V link preoccupies
one disjoint spectrum and takes continuous value. However, to

Fig. 3. Action space, where each agent selects a specific transmit power and
spectrum at each specific environment state st .

satisfy the practical circuit restriction and facilitate the learn-
ing phase, we stipulate the power selection to four options,
i.e., [23, 10, 5,−100] dBm similar to the previous works and
standards [23]. Notably, the V2V link with no power transmit-
ted is set as −100 dBm. Consequently, as illustrated in Fig. 3,
each joint action consists of the spectrum and power and the
dimension of the action space is 4 × K. Herein, the one-hot
coding technique [30] is employed to encode the spectrum-
power pair for controlling the decision making of each agent
using the deep neural network.

4) Design of the Reward: In consideration that all V2I links
have already orthogonally preassigned over the specific sub-
bands, and the optimization objective of the proposed MARL
is the average V2V transmission rate, we, hence, design the
total reward rt+1 of the whole multiagent system at time step
t as follows:

rt+1 =
∑

i

κ i
t (6)

where κ i
t represents the transmission success rate metric for

each agent i at time step t,

κ i
t =

{∑
k 1(ai = k)Cd

i [k, t], if Bi ≥ 0
c, otherwise

(7)

where c is a constant. Before the total payload is delivered,
κ i

t is set as the effective V2V transmission rate and after the
delivery, we employ the constant c as the reward, which is
larger than the maximum possible V2V transmission rate and,
hence, utilized to encourage the MARL to transmit all the
payloads.

III. MEAN-FIELD MARL FOR V2X NETWORKS

Considering there are multiple agents in the whole V2X
communication network, we integrate the stochastic game
theory into original MARL and investigate the interaction
pattern of this multiagent system. In this section, we first
design a multiagent system where the knowledge about other
V2V agents is available to all agents, i.e., the stochastic
game with complete information, regardless of the expo-
nential expansion of the computational complexity caused
by the intricate interaction. Then, the MFG theory is intro-
duced to greatly reduce the computational complexity while
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Fig. 4. Schematic illustration and comparison of MARL, CG-MARL, and MF-MARL approaches for V2X resource allocation.

still maintaining a comparable performance. Specifically, the
illustrative comparison among the three MARL mechanisms
for V2X resource allocation is provided in Fig. 4.

A. CG-MARL

To further investigate the interactions among the agents, we
define an N-player stochastic game to describe the dynamic
game process [25], [26], [31], [32], which can improve the
performance of the multiagent system compared with the
MARL one.

1) N-Player V2V-Based Stochastic Games: Suppose there
are N homogeneous players, i.e., N V2V agents with same
action space, in the game, then the V2V-based stochastic game
of this communication network 
 can be defined as a tuple

 = (S, {Ai}N

i=1, {ri}N
i=1, p, β), where S and Ai represent

the state space of the game, i.e., the V2X environment, and
the action space of V2V agent i, respectively. The reward
function for player i in the V2X network is denoted as ri.
Given the current environment state st ∈ S , the agent i
obtains the observation zi

t ∈ Zi
t and takes an action ai

t and
correspondingly obtains a reward ri

t from the environment.
With all players doing so, the environment state st will be
updated to the next state st+1 with the transition probability
p : S × A1 × · · · × AN → P(S), in which P(S) denotes the
set of probability distribution over state space S . β ∈ [0, 1)

is a discount parameter in terms of the reward across time.
In addition, as discussed in Section II, considering all agents
need to cooperate together to maximize the whole capacity of
the same communication network, the reward for each agent
is designed as the same, i.e., rt = r1

t = · · · = rN
t .

In gaming, each V2V agent selects the action following its
own strategy π i : S → P(Ai). Since the information in
this network is complete, the strategies of other agents can
be involved as one of the decision-making references. We use

π = (π1, . . . , πN) to denote the joint strategy of all agents.
Then, given the specific initial state z0 = z and the joint strat-
egy of all agents, the value function for each agent i can be
expressed to address the following problem:

max
π i

vi(z;π) = Eπ ,p

[ ∞∑

t=0

β tri
t | z0 = z,π

]

s.t. st+1 ∼ p(st+1 | st, at), ai
t ∼ π i

t (st). (8)

2) Equilibrium Strategies: An NE in the communication
network can be treated as a joint strategy where each V2V
agent does not expect to change its own strategy and prefers
to utilize the current one as the best response (BR) against the
others. In this V2V-based game, the NE point can be defined
as a tuple of N strategies (π1∗ , . . . , πN∗ ) for all state z ∈ Z and
all agents i ∈ N [25] such that for all π i

vi(z;π i∗,π−i∗
) ≥ vi(z;π i,π−i∗

)
(9)

where π−i∗ = (π1∗ , . . . , π i−1∗ , π i+1∗ , . . . πN∗ ) denotes the strate-
gies of all V2V agents except for agent i.

3) Nash Cooperative Q-learning: Compared with indepen-
dent Q-learning, where agents do not communicate with each
other, we allow the agents to share information to promote the
cooperative behaviors [33]. At each time t, the action selected
by agent i is based on its observation of the current observa-
tion zt. Afterward, the agent observes the reward shared by all
agents and actions taken by all other agents, as well as the next
state s′ and observation z′. Then, each agent will immediately
calculate the NE π(z′) for updating its Q-value as follows:

Qi
t+1(zt, a) = (1 − α)Qi

t(zt, a) + α
[
ri

t + βNNashvi
t

(
z′

t

)]
(10)

where NNash is an NE operator NNash = ∏N
i=1 π i

t (z
′).

Note that the Q-values of other agents are the critical param-
eters for each agent to obtain the NE point π(z′). However,
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Algorithm 1 V2X Joint Spectrum and Power Allocation With
CG-MARL
Initialize: Environment, all agents’ Q-networks

1: for episode epi = 1, 2, . . . , E do
2: Set greedy parameter ε

3: Update agents’ positions and channel fadings
4: for time step t = 1, 2, . . . , T do
5: Calculate the distances toward all other agents
6: for agent i = 1, 2, . . . , N do
7: Choose action ai

t according to Q-value
Qi

t(z
i
t, ai

t)

8: Collect all agents’ observations zt and actions
a−i = [a1, . . . , ai−1, ai+1, . . . , aN]

9: Update Q-values Qi
t+1(z, a) = (1−α)Qi

t(z, a)+
α
[
rt + βNNashvi

t

(
z′)]

10: end for
11: All agents take actions simultaneously and act to

the environment
12: Environment hand outs rewards rt+1 to all agents
13: Update environment
14: for agent i = 1, 2, . . . , N do
15: Observe the environment zt

16: Store {zt, ai
t, a−i

t , rt+1, zt+1} in the experience
replay memory Ei

17: end for
18: end for
19: Update Q-network using Deep Q-Network (DQN)

method
20: end for

since this part is not shared in the game, each agent needs
to speculate it by itself with the iteration of the game. The
Q-function of agent j can be conjectured by agent i using the
asynchronous updating rule [26], and vector formulation of
this process can be expressed as

Qt+1(z, a) = (1 − α)Qt(z, a) + α
[
rt + βNNashQt

(
z′)] (11)

where Q(z, a) = [Q1(z, a), . . . , QN(z, a)], and r =
[r1, . . . , rN]. With the iterative procedure offered above, we
are able to compute the convergent Nash strategy in this V2X
network using Nash Q-learning. The CG-MARL algorithm is
presented as Algorithm 1.

However, this CG-MARL algorithm proposed above will be
extremely complicated to implement due to the computational
complexity. As the number of V2V agents increases, we must
deal with the exponential expansion of the dimension of joint
action a.

B. MF-MARL

In consideration of the ability of the MFG in presenting
the mass behaviors of the multiagent system as a mean-field
formulation [34], we then utilize the MFG theory to decline
the computational complexity in the CG-MARL, where the
dimension of joint action a grows exponentially with respect
to the number of agents N.

1) Mean-Field Formulation: In the MFG theory, the
interaction between individual agent and the mass of the
whole group of a continuum of players are represented
as the Hamilton–Jacobi–Bellman (HJB) and Fokker–Planck–
Kolmogorov (FPK) equations, respectively [35]. Since the
state space over the environment at time t is described as
st = {{Pt[k]}k∈K, {Xt[k]}k∈K} according to the V2X network
model established above, we then utilize the FPK equation
to model the evolution of the state distribution in a discrete
horizon as

μt+1
(
s′) =

∑

s∈S

∑

a∈A
p
(
s′|a, s, m(a)

)
π(a|s)μt(s) (12)

where μt is the state distribution at time t and p(·) means the
transition probability of the state. Here, s and s′ denote the
current and next states, respectively.

Correspondingly, the action distribution of the multiagent
system will get changed due to the update of state distribution,
which can be defined as

mt(a) =
∑

s∈S
π(a|s)μt(s) (13)

where mt(a) denotes the mean field of action a.
On the other hand, the HJB equation can be used to empha-

size the value function [36]. For the CG-MARL mentioned
above, the value function of agent i in the HJB equation can
be reformulated as

vi(z) = max
π

Eπ

[∫ ∞

0
β trt

(
zi

t, ai
t, mt(a)

)
dt

]

(14)

where zi
t ∈ Zi

t = {O(st, i), ε, t} denotes the observation of
agent i, r(·) denotes the reward function, i.e., payoff function,
for player i in this dynamic game. Let the discount factor β

be e−λ, λ > 0, representing the erosion of the reward over
time.

Meanwhile, based on the Bellman optimality theorem,
where the optimal strategy for agent i should be constituted
by its series of future optimal actions, the optimal action at
any time can be obtained from

λvi(z) + Lvi(z) = 0 (15)

where Lvi(z) represents the Hamiltonian operator associated
with the dynamics.

To integrate the MFG theory into the Nash Q-learning in
CG-MARL with a discrete-time setup [37], we deploy a finite
N-player discrete-time MFG model with a finite amount of
agent actions and environment states. Then, the value function
for V2V agent i in the HJB equation can be reconsidered as

vi
t(z) = max

π
Eπ

[ ∞∑

t=0

β tr
(
zt, ai

t, mt(a)
)
]

. (16)

Furthermore, combined with (8) and (16), (14) can be
updated as the Bellman equation

vi(z;π) = Eπ,p
[
r
(
z, ai, m(a)

) + βvi(z′;π
)]

. (17)

Authorized licensed use limited to: Tsinghua University. Downloaded on April 07,2023 at 02:51:50 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: MEAN-FIELD-AIDED MULTIAGENT REINFORCEMENT LEARNING FOR RESOURCE ALLOCATION 2673

Algorithm 2 V2X Joint Spectrum and Power Allocation With
MF-MARL
Initialize: Environment, all agents’ Q-networks

1: for episode epi = 1, 2, . . . , E do
2: Set greedy parameter ε

3: Update agents’ positions and channel fadings
4: for time step t = 1, 2, . . . , T do
5: Calculate the distances toward all other agents
6: for agent i = 1, 2, . . . , N do
7: Choose action ai

t according to Q-value
8: Observe the environment Zi

t
9: Update the mean-field Q-value function

Q(zt, ai
t, mt(a)) using the HJB equation

10: Update the strategy π i
t using softmax strategy

11: end for
12: Update mean field of state distribution and action

distribution using the FPK equation
13: All agents take actions simultaneously and act to

the environment
14: Environment hand outs rewards rt+1 to all agents
15: Update environment
16: for agent i = 1, 2, . . . , N do
17: Observe the environment zi

t+1
18: Store {zi

t, ai
t, āi

t, rt+1, zi
t+1} in the experience

replay memory Ei

19: end for
20: end for
21: for agent i = 1, 2, . . . , N do
22: Update Q-network using DQN method
23: end for
24: end for

Hereto, the mean-field formulation can be integrally
expressed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

v(z;π) = Eπ ,p
[
r(z, a, m(a)) + βv

(
z′;π

)]

λv(z) + Lv(z) = 0
μt+1(s) = ∑

s
∑

a p
(
s′|s, a, m

)
π(a|s)μt(s)

mt(a) = ∑
s π(a|s)μt(s)

(18)

where zi
t ∈ Zi

t = {O(st, i), ε, t}.
2) MFG to MF-MARL Formulation: Considering the NE of

the game or the optimal actions for agents cannot be acquired
by the value function v(·), we further utilize the state–action-
value function, i.e., the Q-value function, to help each V2V
agent effectively obtain its optimal strategy

Qi(z, a) = max
ai∈Ai

E

[
∑

t

β trt
(
zt, ai

t, mt
) | (z0, a0) = (z, a)

]

.

(19)

The Q-function is then factorized in consideration of
the pairwise local interactions [38], i.e., Qi(z, a) =
1/Ni ∑

j Qj(z, ai, aj), where j ∈ N (i), a = [a1, . . . , aN], and
N (i) is the index set of the neighboring agents of agent
i with size Ni = |N (i)|. With Taylor’s theorem, the pair-
wise Q-function Qj(z, ai, aj) can be furthermore expended

and expressed as 1/Ni ∑
j Qj(z, ai, aj)

Taylor−→ Qj(z, ai, m(a)),

TABLE II
COMPUTATIONAL COMPLEXITY

where ai = [ai
1, . . . , ai

D] can be interpreted as the empirical
distribution of the actions taken by agent i’s neighbors and the
mean field of action mi(t, a) can be treated as āi = 1/Ni ∑

j aj

as a specific condition based on the interactions of neighbor-
hood N (i) of agent i. The interaction is thus simplified and
expressed by the mean-field Q-function below.

3) Mean-Field Q-Update: With the MF-MARL formula-
tion, the mean-field value function with respect to Q-value for
agent i at time t can be obtained as

vi
t+1

(
z′) =

∑

ai

π i
t+1

(
ai | z′, m

)
E

[
Qi

t+1

(
z′, ai, m

)]
(20)

where the mean-field Q-function can be updated in an MDP
manner as

Qi
t+1

(
z, ai, m

) = (1 − α)Qi
t

(
z, ai, m

) + α
[
ri

t + βvi
t

(
z′)] (21)

and the softmax strategy is employed as

π i
ϕ

(
ai | z′, m(a)

) = exp
(
ϕQi

(
s, ai, m(a)

))

∑
aj

exp
(
ϕQi

(
z, aj, m(a)

)) (22)

where ϕ is a hyperparameter that controls the Softmax oper-
ator [27]. Then, this MF-MARL problem is to figure out the
BR π i

t for agent i at time t, which can be acquired through
the mean-field Q-function Qi

t(s, ai, m(a)). The procedure of
MF-MARL method is displayed in Algorithm 2.

C. Complexity Analysis

As the dimension of the joint action a is affected propor-
tionally by the number of the V2V agents, the computational
complexity must be considered for deploying the V2X com-
munication networks more efficiently. In this part, we list the
dimension of the action space via taking the example of an
individual V2V agent, and analyze and compare the compu-
tational complexities for three different MARL algorithms in
Table II.

1) MARL: The Q-value for each V2V agent in the MARL
algorithm includes the state and its own action, i.e., the action
for choosing both sub-band and power to transmit the message.
Since the dimension of the action and the action space for each
V2V agent are two and A, the computational complexity can
be presented as O(n), where n denotes the dimension of the
action space.

2) CG-MARL: For CG-MARL, each V2V agent not only
needs to focus on its own action but also pays attention to
the actions of all other agents, which results in the exponen-
tial expansion of the dimension of the joint action. In such
a scenario, the action space for each agent becomes AN . We
would say the computational complexity increases to O(nN)

from O(n), where N means the number of the V2V agents.
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Fig. 5. DQN with experience replay.

3) MF-MARL: In MF-MARL, all actions except for each
V2V individual are mathematically generalized as a so-called
mean action according to the mean-field theory, Thus, in addi-
tion to its own action, each agent only needs to observe this
mean action that summarizes all action information of the oth-
ers, where the action space for each V2V agent is immediately
reduced to A2. Meanwhile, the complexity of computation
decreases correspondingly to O(n2).

D. Deep Q-Network

In the learning phase, considering the high dimension of
the observation for the agents, we utilize the DQN method
to train the agents’ neural networks [19], [39], for effectively
supporting the learning process of each agent and obtaining
excellent performance in selecting the spectrum and transmit
power.

To avoid the waste of training data and break the data cor-
relation in successive training iterations, the deep Q-network
method with experience replay is deployed to improve the
learning efficiency as well as stabilizing the learning process.
The structure of DQN with experience replay is presented in
Fig. 5.

At each time step t, the transition experience data
(zi

t, ai
t, xi

t, ri
t+1, zi

t+1) is collected by agent i into its memory
pool, where xi

t represents the corresponding action type in
CG-MARL and MF-MARL, respectively. Afterward, with a
dedicated DQN as the decision-making brain, each V2V agent
uniformly samples a minibatch of experiences e from the
memory pool at each episode, to update its Q-network weights
using the stochastic gradient-descent method. Then, the train-
ing of the Q-network can be described as an optimization
problem

Ee∼E
[

rt+1 + β max
at+1

Q
(
zt+1, at+1, xt+1; θ ′) − Q(zt, at, xt; θ)

]2

(23)

where the sum-squared error needs to be minimized. θ ′ and θ

are the parameter sets of the target Q-network and evaluation
Q-network, respectively.

IV. EXPERIMENTS AND RESULTS

In the experiment part, we design a V2X communication
scenario according to 3GPP Release 15, where the settings

TABLE III
SIMULATION SETTINGS [2], [40]

are presented as Table III to evaluate the performance of the
whole multiagent communication system with the series of
implanted MARL approaches. Specifically, the mobility model
in this work is based on the Manhattan case defined in Annex
A of 3GPP TR 36.885 [2]. To ensure the consistency of exper-
iments, the same amount of V2V agents, from 8 to 32, are
deployed in all MARL simulation scenarios.

A. Training Phase

The unicast scheme is implemented in the experimental
simulation where the V2V agent of each vehicle chooses the
nearest neighbor to transmit the message. When the neighbor
is chosen, the V2V agent selects a specific sub-band and power
to transmit. We deployed different amount of vehicles (from
8 to 32), respectively, to investigate how the V2V agents will
perform in such unicast scenarios. To observe the performance
of the proposed MF-MARL proposed above, we set up MARL,
CG-MARL as the experimental comparisons, respectively.

As shown in Fig. 6, the performance of MARL is not
as excellent as CG-MARL and MF-MARL due to the lim-
ited observation information of other agents existing in the
same scenario in support of the next action for each agent.
Meanwhile, CG-MARL and MF-MARL performed much bet-
ter than MARL as the Q-value inside for action selecting has
action parameters to operate. With both updated MARL algo-
rithms, each V2V agent has a complete view of the action of
others, in particular, the agent in the CG-MARL protocol is
able to observe each action selected by all individuals while the
agent in MF-MARL can only observe the general information,
i.e., mean-field of action, of the whole multiagent system.

In Fig. 6, the training performances of MF-MARL and
CG-MARL are almost the same for four scenarios in the
convergence phase (after 2500 episodes). As the amounts of
agents are relatively small, like eight agents in Fig. 6(a), CG-
MARL performs better since the agents only need to spend
little time on finding the behavioral coordination. However, the
coordination strategy for the agent group in the CG-MARL
protocol becomes more complex due to the exponentially
increasing observation with the number of agents, and more
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Fig. 6. Training performances of agents. (a) 8 Agents. (b) 16 Agents. (c) 24 Agents. (d) 32 Agents.

time is required for agents to form their strategies. Therefore,
MF-MARL is able to perform better in the first beginning
during the training phase since it costs much lower comput-
ing resources and the cooperative mode can be found much
quicker in contrast to the CG-MARL, shown in Fig. 6(b)–(d).
In addition, the classical MARL (the blue line in Fig. 6)
can also be treated as a critical baseline compared with the
CG-MARL and MF-MARL methods.

To further investigate the performance of MF-MARL,
we take 200 episodes as an observation batch and obtain
the approximation gap between CG-MARL and MF-MARL
using the mean of the absolute value of both accumulated
rewards

δi = 1

Ui

Ui∑

u=1

|Gu
MF-MARL − Gu

CG-MARL| (24)

where GMF-MARL and GCG-MARL denote the accumulated
rewards of the multiagent system with CG-MARL and MF-
MARL, respectively, and i and U are the number and size
of the observation batch, respectively. In Fig. 7, before 500
episodes, the agent groups in both CG-MARL and MF-
MARL protocols start exploring. Since the way that they

Fig. 7. Reward gap between CG-MARL and MF-MARL.

find the optimal strategies are quite distinguishable, the dif-
ferences of the performances for both modes come out. Yet,
the performance gap between CG-MARL and MF-MARL
gradually becomes smaller and smaller as training proceeds,
and after 500 episodes, the MF-MARL approximates more
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Fig. 8. Payload delivery for each MF-MARL agent in the test phase.

to the CG-MARL while still maintaining a much lower
computational complexity.

B. Testing Phase

To test the real performance of the MF-MARL, we have
built a testing environment to observe how the agents will act
after training. The first evaluation index that we take is the
payload transmission. Fig. 8 presents that the payload in MF-
MARL unicast scenario can be transmitted efficiently by all
V2V agents (around 20 ms for each). Note that the transmis-
sion rates for agents in communication implementation with a
relatively smaller amount of agents, the one with eight agents,
are slightly unstable and there exists one V2V agent spend-
ing around 40 ms to finish the message delivery. While with
the increment of agents, the whole multiagent communication
system gradually performs better and agents inside seem to
update their strategies appropriately to cooperate with each
other due to the mean-field approximation.

Meanwhile, we dig deeper to investigate how much time
each V2V agent exactly needs to transmit the message in
MF-MARL scenario. Therefore, the transmission time of each
agent is studied. The definition of transmission time Ti is given
as the time consumed to transmit the payload of 2120 bytes
(2 × 1060 bytes), namely

Ti = Bi

R̄i
(25)

Fig. 9. Average transmission rates for MARL, CG-MARL, and MF-MARL
in the test phase.

where Bi denotes the payload of V2V agent i and R̄i is the
average transmission rate for agent i before the transmission
finishing. The results of transmission time for all agents cor-
responding to three different MARL protocols and random
mechanism are visualized in Fig. 9. The real line in the fig-
ure denotes the average transmission time over all agents,
while the light-color area is the distribution of all agents.
Due to the instability of the independent MARL, where each
agent in the system is not able to consider the information
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Fig. 10. Average spectrum efficiencies for MARL, CG-MARL, and MF-
MARL in the test phase.

and strategies from others, there may exist some randomness
for this kind of MARL approach, which can be observed
from the light blue region. Therefore, we concentrate more
on the average tendency of transmission rate for this base-
line method drawn in the blue line. However, the transmission
time spent by agents in CG-MARL and MF-MARL is still
much lower than the one in baseline MARL even with such a
condition. With the increment of the number of agents, the per-
formances of CG-MARL and MF-MARL become closer due
to the approximation of the MFG. To be specific, the average
V2V rate of MF-MARL in transmitting the payload converges
to CG-MARL, in particular, while maintaining a much lower
computational complexity.

To investigate how the spectrum is leveraged in the
multiagent system, we measure the average spectrum effi-
ciency of this V2X environment τ̄ referenced in [41], given as

τ̄ = Rtotal

Btotal
=

∑
k∈[K]

∑N
i=1 1(ai = k)R̄iTi

WN
∑N

i=1 Ti
(26)

where Rtotal is total transmission rate, Btotal is total used band-
width, R̄i is the average transmission rate for agent i and
Ti is the time spent for transmitting the payload. W is the
bandwidth. In Fig. 10, the average spectrum efficiencies of
three MARL protocols are represented, respectively. Since the
agents in the MARL protocol is not able to find the optimal
cooperative strategies, which affects how they make use of
the spectrum, the average spectrum efficiency is not as good
as expected. While the agent groups in both CG-MARL and
MF-MARL have already learned behavioral coordination, the
spectrum can be utilized effectively by all agents in the V2X
environment even with the increment of the number of agents.

We have further analyzed the relationship between the aver-
age spectrum efficiency τ̄ and the velocity of the vehicle.
The efficiency is evaluated by setting four different velocities
from 36 to 144 km/h (or from 10 to 40 m/s) with 18 km/h
(or 5 m/s) as the velocity increment in the same scenario.
As presented in Fig. 11, for all algorithms, the average spec-
trum efficiency for the whole multiagent system decreases
with the increment of the velocity of the vehicle. However,

Fig. 11. Average spectrum efficiencies with different velocities.

the performance of each algorithm keeps the same, i.e., CG-
MARL > MF-MARL > MARL > Random approach. Since
the transmission rate is highly relevant to the fading and
path loss, which will be basically affected by the velocity of
the vehicle and the distance between vehicles, the faster the
vehicles are, the lower the spectrum efficiency is.

V. CONCLUSION

In this article, we have proposed an enhanced MARL,
named the MF-MARL approach, which fuses the MFG theory
to MARL in the vehicular network to implement the joint spec-
trum and power allocation with massive V2V links. According
to the experimental simulation, MF-MARL is able to achieve
about 95% performance of the CG-MARL while greatly reduc-
ing the computational complexity from O(nN) to O(n2). We
believe that the proposed method may overcome the con-
straints of the agent number in traditional MARL and makes it
possible to the deployment of massive agents in V2X commu-
nication networks. Furthermore, we also find that the excellent
performance of MF-MARL in the spectrum and power allo-
cation reveals the potential in allocating other communication
resources as well, and we are also willing to cope with such
problems in the short period of future to promote the practi-
cal value of our work, which is discussed in Section V of the
revised manuscript as well.

REFERENCES

[1] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, Nov./Dec. 2015.

[2] “Technical specification group radio access network; study LTE-based
V2X services; (Release 14),” 3GPP, Sophia Antipolis, France, 3GPP
Rep. TR 36.885 V14.0.0, Jun. 2016.

[3] S. S. Husain, A. Kunz, A. Prasad, E. Pateromichelakis, and K. Samdanis,
“Ultra-high reliable 5G V2X communications,” IEEE Commun.
Standards Mag., vol. 3, no. 2, pp. 46–52, Jun. 2019.

[4] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.

[5] M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization techniques
for orthogonal frequency division multiple access (OFDMA): A tutorial
review,” Proc. IEEE, vol. 95, no. 7, pp. 1394–1427, Jul. 2007.

[6] D. D. Falconer, F. Adachi, and B. Gudmundson, “Time division multiple
access methods for wireless personal communications,” IEEE Commun.
Mag., vol. 33, no. 1, pp. 50–57, Jan. 1995.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 07,2023 at 02:51:50 UTC from IEEE Xplore.  Restrictions apply. 



2678 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 3, 1 FEBRUARY 2023

[7] D. J. Love, R. W. Heath, and T. Strohmer, “Grassmannian beamforming
for multiple-input multiple-output wireless systems,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2735–2747, Oct. 2003.

[8] Y. Qi, Y. Zhou, Y.-F. Liu, L. Liu, and Z. Pan, “Traffic-aware task
offloading based on convergence of communication and sensing in
vehicular edge computing,” IEEE Internet Things J., vol. 8, no. 24,
pp. 17762–17777, Dec. 2021.

[9] Y. Qi, L. Tian, Y. Zhou, and J. Yuan, “Mobile edge computing-assisted
admission control in vehicular networks: The convergence of commu-
nication and computation,” IEEE Veh. Technol. Mag., vol. 14, no. 1,
pp. 37–44, Mar. 2019.

[10] A. Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, “Edge-
enabled V2X service placement for intelligent transportation systems,”
IEEE Trans. Mobile Comput., vol. 20, no. 4, pp. 1380–1392, Apr. 2021.

[11] F. Jameel, W. U. Khan, N. Kumar, and R. Jäntti, “Efficient power-
splitting and resource allocation for cellular V2X communications,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 6, pp. 3547–3556,
Jun. 2021.

[12] X. Li, L. Ma, R. Shankaran, Y. Xu, and M. A. Orgun, “Joint power con-
trol and resource allocation mode selection for safety-related V2X com-
munication,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7970–7986,
Aug. 2019.

[13] L. F. Abanto-Leon, A. Koppelaar, C. B. Math, and S. H. de Groot,
“Impact of quantized side information on subchannel scheduling for
cellular V2X,” in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring),
2018, pp. 1–5.

[14] F. Abbas, P. Fan, and Z. Khan, “A novel low-latency V2V resource
allocation scheme based on cellular V2X communications,” IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 6, pp. 2185–2197, Jun. 2019.

[15] X. Li, L. Ma, Y. Xu, and R. Shankaran, “Resource allocation for D2D-
based V2X communication with imperfect CSI,” IEEE Internet Things
J., vol. 7, no. 4, pp. 3545–3558, Apr. 2020.

[16] W.-C. Chiang and R. A. Russell, “Simulated annealing metaheuristics
for the vehicle routing problem with time windows,” Ann. Operat. Res.,
vol. 63, no. 1, pp. 3–27, 1996.

[17] M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency
wireless communication: Tail, risk, and scale,” Proc. IEEE, vol. 106,
no. 10, pp. 1834–1853, Oct. 2018.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[19] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.
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