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Abstract—The utilization of heterogeneous end devices such
as the low earth orbit (LEO) satellite, unmanned aerial vehicles
(UAVs) and ground users (GUs) deployed at different altitudes,
known as the space-air-ground integrated network (SAGI-Net),
can be quite promising towards a bunch of advanced applications.
Whereas, the energy efficiency of the SAGI-Net communication
system is a key criterion needed to be improved urgently in
consideration that the inappropriate communication routing
will undoubtedly cause a huge communication energy cost of
the system especially with a large number of communication
devices inside. In this paper, we proposed a novel communication
routing selection model for the SAGI-Net system and established a
heterogeneous multi-agent reinforcement learning (HMF-MARL)
framework to optimize the communication energy efficiency of this
system, where the mean-field theory was introduced to enhance
the ability of classic MARL method while still maintaining a
relatively low computational complexity. The experiment results
show that the capacity of the heterogeneous multi-agent system
has been improved by nearly 80% using the proposed HMF-
MARL method compared with the classic MARL one, which
hopefully shows the potential value on the implementation of the
SAGI-Net system in the future.

Index Terms—SAGI-Net, heterogeneous mean field, MARL,
communication routing selection, computational complexity.

I. INTRODUCTION

With the development of 5G technology, the Internet of
things (IoT) plays a vital role in a myriad of applications and
services nowadays, such as intelligent transportation systems,
home automation, and smart factory [1]. To support these
applications, huge computing demands emerge on IoT devices,
which pose a challenge to current wireless communication
networks as the current terrestrial communication paradigm
cannot meet the requirement. As an extension to terrestrial
communication, the space-air-ground integrated network (SAGI-
Net) is proposed. SAGI-Net is a heterogeneous system that
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integrates satellites, air system consistent with unmanned aerial
vehicles (UAV), and terrestrial communication system such as
base station (BS) and aims to provide flexible network coverage
and services [2].

SAGI-Net is viewed as a potential solution to meet the
computing needs of IoT services and applications. However,
there are still several challenging issues when employing
SAGI-Net in IoT serves. Firstly, as the air system features
high mobility, the communication routing in SAGI-Net faces
dynamic channel conditions and coverage. In addition, different
subsystems in SAGI-Net do not share the same communication
interface and channels. Therefore, a thoughtful communication
routing policy is required.

In recent years, reinforcement learning (RL) approaches,
especially multi-agent reinforcement learning (MARL) has
gained a surge of popularity in IoT network solutions since they
hold efficacious promise to help address long-term decision-
making problems in complex environments [3]. However,
current MARL methods will face the curse of dimensionality
when the agent number in the system goes large. Mean-field
game (MFG) theory is an effective approach for handling such
problems with a mass of agents or players, where the states
or actions of all agents are established as two distributions
or a joint distribution and each agent needs only to observe
the distribution rather than every component [4, 5]. Therefore,
the computational complexity of the numerical analysis for
the multi-agent system can be apparently decreased. Chen
et al. proposed a mean-field MARL method, named mean-
field trust region policy optimization method, to obtain the
optimal UAVs control [4]. To figure out the power control
problem for ultra-dense device-to-device networks, Yang et al.
formulated an MFG theoretic framework to acquire the energy
and interference aware power control policy [5].

Nevertheless, the previous works on MFG mainly concentrate
on homogeneous agents while there usually exist several or
many categories of communication devices in a SAGI-Net,
which leads to a heterogeneous communication system. Mondal
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et al. discussed an integrated framework that combines the MFC
theory and MARL from a theoretical point of view [6]. And
some epidemic spreading models have also been established
via heterogeneous mean-field approaches [7].

Considering that there are still few cross studies on the
heterogeneous mean-field theory and MARL on SAGI-Net,
we contribute to this work mainly from the following aspects:
First of all, a specifically designed SAGI-Net communication
routing model is proposed in a novel manner to optimize
the transmission latency of the whole system, which is
established as a distributionally robust optimization model.
Second, we structure the SAGI-Net communication routing
model as a Markov decision process of MARL. Finally, an
enhanced MARL method, namely HMF-MARL, that combines
heterogeneous mean-field theory with the classic MARL is
implemented to obtain the numeral solutions.

II. SYSTEM MODEL

We consider four communication categories at three different
altitudes, with a bunch of GUs and a BS on the ground layer,
the UAV swarm hovering in the air layer and a LEO satellite
in the space layer, and five classes of communication links
among these categories. The SAGI-Net communication system
is presented in Fig. 1. The links started from GUs to BS, UAVs
and satellite are modeled as GU-to-BS (G2B) link, GU-to-UAV
(G2U) link and GU-to-Satellite (G2S) link, respectively. While
each UAV can also establish two kinds of links from itself to
BS and satellite, expressed similarly as the UAV-to-BS (U2B)
link and UAV-to-Satellite (U2S) link.

At the beginning of each time slot, both GU and UAV swarm
generate a series of data packets needed to be transmitted to the
remote servers eventually. The BS and satellite are considered
as the terminal transmission devices for each GU and UAV to
transmit the data packets in the SAGI-Net, where the UAV in
the air layer can be utilized as an intermediary for each GU
in the ground to transmit the packet when the G2S or G2B
link are temporally crowded or considering the transmit speed
of them are relatively low. Specifically, GU and UAV swarm
involve N1(= |N1|) and N2(= |N2|) homogeneous individuals
respectively and can be further treated as a heterogeneous sys-
tem N (= {N1,N2}), where N1 = {GU1, GU2, . . . , GUN1}
and N2 = {UAV1, UAV2, . . . , UAVN2}. Each GU can select
only one link from G2B, G2U, and G2S links to transmit data,
while U2B or U2S are two links for each UAV to choose from.
Note that the G2U link can only be generated if the UAV
selected by the GU agrees to make this connection. Hereto,
the objective of this SAGI-Net is to optimize the network
capacity of the holistic system. In consideration that both GU
groups and UAV swarm need to coordinate as a team in this
scenario, we therefore model this SAGI-Net as a cooperative
heterogeneous system.

The unicast protocol is employed in this work, where each
GU or UAV can only select one objective to transmit its
message, and the transmission between the same category,
such as GU-to-GU and UAV-to-UAV, is prohibited to prevent
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Fig. 1. A schematic illustration of SAGI-Net.

message congestion. Since there exits three layers in this SAGI-
Net, we allocate two bandwidths W1 and W2 that support the
low-altitude and high-altitude transmission, respectively, in
which low-altitude bandwidth W1 supports G2B, G2U and
U2B links while G2S and U2S links are on the high-altitude
bandwidth W2.

For the terrestrial Links including G2B, U2B and G2U
links, in consideration of the interfering channels over the
sub-band according to [3], the signal-to-interference-plus-noise
ratio (SINR) of terrestrial link over h-th (h ∈ [H]) sub-band
can be established as,

γa
i [h] =

pai [h]gi,B [h]

σ2 + ϕterra
i [h]

, (1)

and
γG2U
i,j [h] =

pG2U
i [h]gi,j [h]

σ2 + ϕterra
i [h]

, (2)

where a ∈ {G2B,U2B}, pai [h] and gi,B [h] refer to transmit
power and channel of i-th (i ∈ N ) GU or UAV to the BS over
h-th sub-band and pG2U

i [h] and gi,j [h] indicate the transmit
power and the channel from the i-th GU to the j-th UAV over
the h-th sub-band. σ2 indicates the noise power. Meanwhile,
considering that both GUs and UAVs keep transmitting data
packets to the same BS and their transmissions will be hence
interfered more by each other, we model the interference power
ϕterra
i [h] as,

ϕterra
i [h] =

∑
i′∈N ,i′ ̸=i

xi′,B [h]p
a
i′ [h]gi′,B [h]

+
∑

i′∈N ,i′ ̸=i

∑
j∈N2

xi′,j [h]pi′,j [h]gi′,j [h],
(3)

where x(·) is the indicator function equal to 1 if the h-th sub-
band is occupied and 0 otherwise. Note that if i ∈ N2, for all
i′ ∈ N1 there has that i′ ̸= i and therefore, the inference from
U2B links becomes

∑
i′∈N1

∑
j∈N2

xi′,j [h]pi′,j [h]gi′,j [h].
For non-terrestrial links including U2S and G2S links, since

the satellite can be utilized to support long-range transmission
due to its wide horizon, the G2S and U2S links in this SAGI-
Net can be treated as a relatively smaller BS with relatively
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wide bandwidth for receiving a series of messages from both
GUs and UAVs. Therefore, we express the SINR of G2S and
U2S link over h-th (h ∈ [H]) sub-band as,

γb
i [h] =

pbi [h]gi,S [h]

σ2 + ϕb
i [h]

, (4)

where b ∈ {G2S,U2S}, pbi [h] and gi,S [h] indicate the transmit
power and the interfering channel from the i-th GU or UAV
to the satellite over the h-th sub-band. And considering there
are only G2S and U2S links on the high-altitude bandwidth
W2, we use

ϕb
i [h] =

∑
i′∈N ,i′ ̸=i

xi′,S [h]p
b
i′ [h]gi′,S [h], (5)

to indicate the interference power of i′-th non-terrestrial links
over h-th sub-band.

Furthermore, based on all types of SINRs above, the transmit
rates of different links over the same h-th sub-band can be
hence established as

Rc[h] = Wd log(1 + γc[h]), (6)

where c ∈ {G2B,G2S,G2U,U2B,U2S} represents different
types of links and d ∈ {1, 2} indicates the bandwidth occupied
for transmission.

The latency of transmitting the data packet or message
between communication nodes depends mainly on and packet
size B and the transmit rate over the specific sub-band, given
as,

Lc[h] =
B

Rc[h]
, (7)

where the size of message B is considered a fixed constant
for both GUs and UAVs in this work.

According to the distributionally robust optimization model,
the worst-case, i.e. the maximum latency, in the communication
system determines the quality of the transmission [8, 9]. With
the maximum latency over a series of fixed time slots ∆T ,
the objective in this SAGI-Net is to minimize the expected
maximum latency over a series of fixed time slots ∆T ,
mathematically formulated as,

min
X,P,H

max
ω∈Ω

ω,∆T

[
Lc(X,P,H)

]
s.t.(a)

∑
j

xi,j + xi,B + xi,S=1,∀GUi, i ∈ N1,

(b) xj,B + xj,S = 1,∀ UAVj , j ∈ N2,

(c) xi,j , xi,B , xi,S , xj,B , xj,S ∈ {0, 1},
(d) pi,j , pi,B , pi,S , pj,B , pj,S ≥ 0,

(8)

where ω denotes the worst-case distribution realization in all
case realization Ω.

III. HETEROGENEOUS MEAN-FIELD MARL IN SAGI-NET

In this section, we have specifically formulated the distribu-
tionally robust optimization model of SAGI-Net into a MARL
framework in the first step. Then the classic MARL algorithm
is utilized to cope with this optimization problem. Afterwards,
we further integrate the heterogeneous mean-field theory into
the classic MARL to enhance its performance.

A. Markov Decision Process of MARL
RL is a goal-oriented learning approach in which an agent

learns to achieve the optimal long-term goal through trail and
error in a specific environment. The agent is rewarded when its
behaviour leads to satisfactory outcomes, or get punished when
its behaviour leads to bad results. A typical problem in RL can
be modeled as a Markov Decision Process (MDP) which is
composed of a tuple ⟨S,A,P, R, γ⟩, where S denotes the set
of possible states of the environments, A denotes the set of the
agent’s possible actions, P denotes the transition distribution
P (s′|s, a), R denotes the reward function evaluating a transition
from s to s′ as a result of action a and γ ∈ [0, 1) is the
discounted factor that represents the value of time. The goal of
RL is to learn a policy π : S → A to maximize the expected
cumulative reward. Based on this we can define the state-action
function (Q-function) for a policy π as:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtRt|s0 = s, a0 = a

]
. (9)

MARL is an extended form of RL where multiple agents
interact in the environment. Similarly, a MARL problem can
be represented as a tuple ⟨N ,S,A,P, R, γ⟩, where N =
{1, · · · , n} is the set of agents, S denotes the global state
space and A = Πn

j=1Aj is the joint action space for n agents.
The remaining components have the same meaning as in the
MDP of single-agent RL. In MARL, the Q-function for each
agent j can be reformulated as:

Qπ(sj , aj , s−j , a−j) = Eπ

[ ∞∑
t=0

γtRt
i|s, a, s−j , a−j

]
, (10)

where s−j and a−j are the joint state and joint action of all
agents except agent j.

B. Heterogeneous Mean-Field Cooperative MARL
In this part, we formulate our problem into a heterogeneous

cooperative MARL. We have two heterogeneous sets of agents
N1 and N2, which represent the population of UAVs and GUs,
respectively. And we assume the agents in each heterogeneous
set are homogeneous, i.e., they share the same state sapce Sl

and action space Al for class l. Hence our global state space and
joint action space can be represented as S = (S1)

N1 × (S2)
N2

and A = (A1)
N1 × (A2)

N2 . In the cooperative setting, the
overall reward of the system is the summation of the rewards
of each individual agent. We assume that the Q-function can
be decomposed as the pairwise local interactions:

Qj(s,a)=
1

N j
1

∑
k1

Qj(s,aj ,ak1
1 )+

1

N j
2

∑
k2

Qj(s,aj ,ak2
2 ), (11)

where k1 ∈ N1(j) and k2 ∈ N2(j) are the index sets of the
neighboring UAV agents and GU agents with respect to agent
j with size N j

1 = |N1(j)| and N j
2 = |N2(j)| 1. And this

formulation can be rewritten as

Qj(s,a) =
1

N j

Nj∑
k=1

Qj(s, aj , ak1 , a
k
2), (12)

1We use j as the index of agents for the whole heterogeneous system.

E
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where N j = N j
1 +N j

2 and we add a placeholder agent of the
other class in each term of (11).

Since we have an enormous amount of agents in each
heterogeneous subsystem, conventional control methods can
be impractical due to the curse of dimensionality of the multi-
agent problem. Here we use the idea of mean field theory [10]
to tackle the scalability issue of MARL in the SAGI-Net
system. Using mean-field approximation [10, 11], the pairwise
interactions Qj(s, aj , ak1 , a

k
2) can be expended by Taylor’s

theorem and expressed as the mean effect of the neighboring
agents:

Qj(s,a)=
1

N j

Nj∑
k=1

Qj(s, aj , ak1 , a
k
2)≈Qj(s, aj , aj1, a

j
2), (13)

where ajl (l ∈ {1, 2}) denotes the mean action of agents
belonging to class l in the neighborhood of agent j.

C. Implementation

We use deep Q-learning to learn the state-action function in
heterogeneous mean-field multi-agent reinforcement learning
(HMF-MARL). We roll out current policy to collect experiences
⟨s,a, r, s′,a1,a2⟩ and store them to a replay buffer. The
model parameter of Q network is learned by sampling batches
of D transitions from the replay buffer and minimizing the
squared temporal difference error:

L(θj) =
D∑

d=1

[(
yjd −Qj(s, aj , aj1, a

j
2; θ

j)
)2

]
, (14)

where yj = rj + γmaxaj′Qj(s′, aj
′
, aj

′

1 , a
j′

2 ; θ
j
−). θ

j
− are the

parameters of agent j’s target network that are periodically
updated by θj . The mean actions aj

′

1 and aj
′

2 for next state are
predicted by the current policy.

IV. EXPERIMENTS AND RESULTS

For implementing the HMF-MARL method in the SAGI-Net,
we have specifically designed a SAGI communication scenario.
Since there does not exist an overall channel model for SAGI,
we combine different channel models to characterize different
channels in SAGI-Net. Specifically, we model the G2B channel
as WINNER II channel model [12], U2B channel following
the definition in 3GPP TR 36.777 Rel. 15 [13], G2U channel
following definition in [14] and non-terrestrial links (G2S and
U2S) following the definition in 3GPP TR 38.811 Rel. 15 [15].
The simulation experiment settings are listed as Table. I.

To evaluate the performance of the proposed HMF-MARL
approach, we then set the classic MARL as the comparison,
which is also specifically established based on this SAGI-Net
communication scenario. And the random experiment, where
both GUs and UAVs just select actions randomly, is treated as
the lower bound. The rewards with different methods in the
training phase are presented in Fig. 2.

Fig. 2 shows that even though the performance of classic
MARL is about 1.5 times the lower bound, it is still relatively
inferior due to the limited information sharing for this SAGI-
Net multi-agent system. While the performance of proposed
HMF-MARL method has dramatically reaches nearly three

TABLE I
SIMULATION SETTINGS [12–15]

Network Parameter Detail

Number of GU 5
Number of UAV 3
Number of BS 1

Number of Satellite 1
Carrier Frequency of terrestrial links 2 GHz

Bandwidth of terrestrial links 10 MHz
Carrier Frequency of non-terrestrial links 30 GHz

Bandwidth of non-terrestrial links 50 MHz
GU & UAV Transmit Power [23,10,5,-100] dBm

Number of sub-band 10
BS Antenna Gain 8 dBi

UAV & GU Antenna Gain 3 dBi
GU & UAV Receiver Noise Figure 9 dB

BS Receiver Noise Figure 5 dB
Noise Power -114 dBm

Time Slot for Package Delivery 100 ms
Message Size [10, 20, . . . , 50]× 1060 bytes

DQN Parameter Detail

Number of Episode 3000
Time Step 100

Learning Rate 0.001
Discount Factor 0.99

Gradient Descent Frequency 100
Target Q-Network Update Frequency 2000

Batch Size 256
Node Activation DQN ReLU Function

Fig. 2. The episode rewards with increasing training iterations.

times the lower bound, where both each GU and UAV not
only keep collecting the full observation over the whole
communication networks, but utilize the mean field of action
from both agent classes (i.e., GUs and UAVs) as the critical
factors for making decision.

In addition, for further investigating the effectiveness and
stability of this HMF-MARL method, the package sizes for
both GUs and UAVs to transmit are set as [10, 20, 30, 40, 50]
Kb, respectively. And the accumulated rewards obtained by the
multi-agent system using HMF-MARL are shown in Fig. 3.

We show in Fig. 3 that the accumulated rewards in con-
vergence phase (after about 2500 episodes) decrease with the
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Fig. 3. Episode rewards of HMF-MARL with different package sizes.

Fig. 4. The average latency of GUs and UAVs in HMF-MARL protocol.

increment of the package sizes. Since all the communication
resources, such as bandwidth, spectrum, transmit power, etc.,
for each agent of different classes to transmit do not change
while the payload size rises, it becomes more difficult for GUs
and UAVs to complete the package delivery in the limited
time slots, which results in the decline of the accumulated
rewards because the reward is strictly bound to the objective
function, i.e. (8). Meanwhile, the stably and promptly increasing
rewards in HMF-MARL scenario indicate the effectiveness of
this algorithm.

Furthermore, we investigate the average transmission latency
of GUs and UAVs to study the transmission capacity of the
whole SAGI-Net communication networks. Fig. 4 presents that
the average transmission latency of GUs and UAVs both rise
with the increment of the package size due to the larger payload
size and constant and limited communication resources. And
the GU class generally takes less time to transmit the data
package in contrast to the UAV class since each GU has more
communication routing options than the UAV does, which
makes the routing selection for the GU class more flexible.

V. CONCLUSION

In this work, we have proposed a specifically designed
HMF-MARL approach for tackling the communication routing
selection problem over the SAGI-Net scenario in a novel
manner. Considering that there are multiple types of com-
munication nodes and different communication protocols are
correspondingly required in this complex network system, we
choose to introduce a novel heterogeneous mean-field theory
and integrate it into the classic MARL approach for enhancing
its performance. The experiment results show that the capacity
of the heterogeneous multi-agent system has been improved by
nearly 80% using the proposed HMF-MARL method compared
with the classic MARL one, which may provide a promising
way towards implementing the heterogeneous and distributed
MARL protocol in the SAGI-Net communication networks.
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