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Graphon Mean-Field Control for Cooperative Multi-Agent
Reinforcement Learning

Yuanquan Hu, Xiaoli Wei*, Junji Yan, Hengxi Zhang

Abstract

The marriage between mean-field theory and reinforcement learning has shown a great
capacity to solve large-scale control problems with homogeneous agents. To break the
homogeneity restriction of mean-field theory, a recent interest is to introduce graphon the-
ory to the mean-field paradigm. In this paper, we propose a graphon mean-field control
(GMFC) framework to approximate cooperative heterogeneous multi-agent reinforcement
learning (MARL) with nonuniform interactions and heterogeneous reward functions and
state transition functions among agents and show that the approximate order is of O(\/LN),
with NV the number of agents. By discretizing the graphon index of GMFC, we further
introduce a smaller class of GMFC called block GMFEFC, which is shown to well approximate
cooperative MARL in terms of the value function and the policy. Finally, we design a Prox-
imal Policy Optimization based algorithm for block GMFC that converges to the optimal
policy of cooperative MARL. Our empirical studies on several examples demonstrate that
our GMFC approach is comparable with the state-of-art MARL algorithms while enjoying
better scalability.
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1 1. Introduction

2 Multi-agent reinforcement learning (MARL) has found various applications in the field
3 of transportation and simulation [50, 1], stock price analysis and trading [32, 31], wireless
4 communication networks [12, 11, 13|, and learning behaviors in social dilemmas [33, 28, 34].
s MARL, however, becomes intractable due to the complex interactions among agents as the
6 number of agents increases.

7 A recent tractable approach is a mean-field approach by considering MARL in the regime
s with a large number of homogeneous agents under weak interactions [20]. According to the
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o number of agents and learning goals, there are three subtle types of mean-field theories for
10 MARL. The first one is called mean-field MARL (MF-MARL), which refers to the empirical
1 average of the states or actions of a finite population. For example, [52] proposes to approx-
12 imate interactions within the population of agents by averaging the actions of the overall
13 population or neighboring agents. [35] proposes a mean-field proximal policy optimization
14 algorithm for a class of MARL with permutation invariance. The second one is called mean-
15 field game (MFG), which describes the asymptotic limit of non-cooperative stochastic games
16 as the number of agents goes to infinity [30, 27, 8]. Recently, a rapidly growing literature
17 studies MFG for noncooperative MARL either in a model-based way [53, 6, 26] or by a
18 model-free approach [25, 48, 18, 14, 44]. The third one is called mean-field control (MFC),
19 which is closely related to MFG yet different from MFG in terms of learning goals. For
20 cooperative MFC, the Bellman equation for the value function is defined on an enlarged
21 space of probability measures, and MFC is always reformulated as a new Markov decision
22 process (MDP) with continuous state-action space. [9] shows the existence of optimal poli-
23 cies for MFC in the form of mean-field MDP and adapts classical reinforcement learning
24 (RL) methods to the mean-field setups. [23] approximates MARL by a MFC approach, and
25 proposes a model-free kernel-based Q-learning algorithni (MFC-K-Q) that enjoys a linear
26 convergence rate and is independent of the number of agents. [44] presents a model-based
27 RL algorithm M3-UCRL for MFC with a general regret bound. [2] proposes a unified two-
28 timescale learning framework for MFG and MFC by tuning the ratio of learning rates of @
20 function and the population state distribution. Under the framework of MFC, [41] proposes
30 locally executable policies such that the resulting discounted sum of average rewards well
31 approximates the optimal value function over all policies with theoretical guarantee.

32 One restriction of the mean-field theory is that it eliminates the difference among agents
33 and interactions between agents are assumed to be uniform. However, in many real world
32 scenarios, strategic interactions between agents are not always uniform and rely on the
35 relative positions of agents. To develop scalable learning algorithms for multi-agent systems
36 with heterogeneous agents, one approach is to exploit the local network structure of agents
37 [45, 37]. Another approach is to consider mean-field systems on large graphs and their
38 asymptotic limits, which leads to graphon mean-field theory [39]. So far, most existing
39 works on graphon mean-field theory consider either diffusion processes without learning in
a0 continuous time or non-cooperative graphon mean-field game (GMFQG) in discrete time. [3]
a1 considers uncontrolled graphon mean-field systems in continuous time. [17]| studies MFG
a2 on an Erdos-Rényi graph. [19] studies the convergence of weighted empirical measures
a3 described by stochastic differential equations. [4] studies propagation of chaos of weakly
a4 interacting particles on general graph sequences. [5] considers general GMFG and studies
a5 e-Nash equilibria of the multi-agent system by a PDE approach in continuous time. [29]
46 studies stochastic games on large graphs and their graphon limits. It shows that GMFG
47 is viewed as a special case of MFG by viewing the label of agents as a component of the
s state process. [21, 22] study continuous-time cooperative graphon mean-field systems with
a0 linear dynamics. On the other hand, |7] studies static finite-agent network games and their
so associated graphon games. [49] provides a sequential decomposition algorithm to find Nash
51 equilibria of discrete-time GMFG. [15] constructs a discrete-time learning GMFG framework
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52 to analyze approximate Nash equilibria for MARL with nonuniform interactions. However,
53 little is focused on learning cooperative graphon mean-field systems in discrete time, except
s for [42, 43| on particular forms of nonuniform interactions among agents. [43] proves that
55 when the reward is affine in the state distribution and action distribution, MARL with
ss nonuniform interactions can still be approximated by classic MFC. [42] considers multi-
57 class MARL, where agents belonging to the same class are homogeneous. In contrast, we
ss consider a general discrete-time GMFC framework under which agents are allowed to be
so fully heterogeneous and interact non-uniformly on any network captured by a graphon.

60 Qur Work. In this work, we propose a general discrete-time GMFC framework to approx-
61 imate cooperative heterogeneous MARL on large graphs by combining classical MFC and
62 network games. Theoretically, we first show that GMFC can be reformulated as a new
63 MDP with deterministic dynamics and infinite-dimensional state-action space, hence the
62 Bellman equation for Q function is established on the space of probability measure ensem-
65 Dbles. It shows that GMFC approximates cooperative MARL well in terms of both value
ss function and optimal policies. The approximation error is at order O(1/v/N), where N is
67 the number of agents. Furthermore, instead of learning infinite-dimensional GMFC directly,
es we introduce a smaller class called block GMFC by discretizing the graphon index, which
6o can be recast as a new MDP with deterministic dynamic and finite-dimensional continuous
70 state-action space. We show that the optimal policy ensemble learned from block GMFC
71 is near optimal for cooperative MARL. Using the approach in [38], we develop a proximal
72 policy optimization (PPO) based algorithm for block GMFC, which, together with approxi-
73 mation result between block GMFC and cooperative MARL, shows that the proposed PPO
74 algorithm converges to the optimal policy of MARL with the sample complexity guarantee.
75 Empirically, our experiments in Section 5 demonstrate that when the number of agents be-
76 comes large, the mean episode reward of MARL becomes increasingly close to that of block
77 GMFC, which verifies our theoretical findings. Furthermore, our block GMFC approach
7s achieves comparable performances with other popular existing MARL algorithms in the
79 finite-agent setting.

so  Outline. The rest of the paper is organized as follows. Section 2 recalls basic notations
s1  of graphons and introduces the setup of cooperative MARL with nonuniform interactions
s2 and its asymptotic limit called GMFC. Section 3 connects cooperative MARL and GMFC,
s3 introduces block GMFC for efficient algorithm design, and builds its connection with coop-
sa erative MARL. The main theoretical proofs are presented in Section 4. Section 5 tests the
ss performance of block GMFC experimentally.

ss 2. Mean-Field MARL on Dense Graphs

g7 2.1. Preliminary: Graphon Theory

88 In the following, we consider a cooperative multi-agent system and its associated mean-
so field limit. In this system, each agent is affected by all others, with different agents exerting
oo different effects on her. This multi-agent system with N agents can be described by a
o1 weighted graph Gy = (Vn,EnN), where the vertex set Vy = {1,..., N} and the edge set Ex
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o2 represent agents and the interactions between agents, respectively. The adjacency matrix
o3 of G is represented as {{%}13’5 ~. To study the limit of the multi-agent system as N
94 goes to infinity, we adopt the graphon theory introduced in [39] used to characterize the
o5 limit behavior of dense graph sequences. Therefore, throughout the paper, we assume the
o6 graph G is dense and leave sparse graphs for future study.

97 In general, a graphon is represented by a bounded symmetric measurable function W :
8 I xZ—Z,withZ =10,1]. We denote by W the space of all graphons and equip the space
90 WV with the cut norm || - ||o
[Wlo = sup W (e, B)dadp|.
STCI|JSxT

10 For each weighted graph Gy = (Vn,En), we consider the correspondence between the
101 adjacency matrix { l{\;} and a function on Z x 7 with constant value l{\g on each block
w2 (54, 4] % (J%, %] We make the following condition on the strength of interaction 51{\9
103 between agents ¢ and j and the associated W .

104 Condition on Wy and §ZN]~

105 1) Wy is a step graphon, that is, 0 < Wy < 1 and Wy is a constant on each block

w (LA A

Wil B) = Wi (. 2), ifae (o~ pe (Ut 2 (21)
= —_—, — 1 - AR .
VA MNNLEST VNN N 'N
2) 5% is taken as either
N _ i
&= WN(N’ N (C1)
or
N : i

&y~ Bernoulh(WN(N, N)) (C2)
107 We further assume that the sequence of Wy converges to a graphon W in cut norm as

108 the number of agents N goes to infinity, which is crucial for the convergence analysis of
100 cooperative MARL in Section 3.

10 Assumption 2.1 The sequence (Wn)nen converges in cut norm to some graphon W € W
1 such that

||WN — W”D — 0.
112 Some common examples of graphons include

113 1) Erdés Rényi: W(a, ) =p, 0<p <1, a,p €T
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114 2) Stochastic block model:

p f0<a,f<050r05<a,8<1,
w = .
(o, ) { q otherwise,
115 where p represents the intra-community interaction and ¢ the inter-community inter-

116 action;

7 3) Random geometric graphon: W (e, 8) = f(min(|8—al,1—|3—al)), where f : [0,0.5] —
118 [0,1] is a non-increasing function.

1o 2.2. Cooperative Heterogeneous MARL

120 In this section, we facilitate the analysis of MARL by considering a particular class of
121 MARL with nonuniform interactions, where each agent interacts with all other agents via
122 the aggregated weighted mean-field effect of the population of all agents.

123 Recall that we use the weighted graph Gy = (Vn,En) to represent the multi-agent
124 system, in which agents are cooperative and coordinated by a central controller. They
125 share a finite state space S and take actions from a finite action space A. We denote by
126 P(S) and P(A) the space of all probability measures on § and A, respectively. Furthermore,
127 denote by B(S) the space of all Borel measures on S.

128 For each agent i, the neighborhood empirical measure is given by
; 1
’W -—_
W) = o SN0 (22)
JjEVN

120 where §_; denotes Dirac measure at s/, and (See [15] for more details).
t

130 At each step t = 0,1,--- , if agent i, i € [N] at state si € S takes an action a! € A, then
131 she will receive a reward

o (Sh ™, af), i€ [N, (23)

132 where 7' : § x B(S) x A~ R, i € [N], and she will change to a new state s}, according to
133 a transition probability such that

3§+1 oyl (‘ si, ui’WN, ai), i € [N], 56 ~peP(S), (2.4)

13s where P': S x B(S) x A — P(S), i € [N].

135 (2.3)-(2.4) indicate that the reward and the transition probability of agent i at time
136t depend on both her individual information (s%, af;) and neighborhood empirical measure
137 /J,i’WN .

138 Furthermore, the policy is assumed to be stationary for simplicity and takes the Marko-

139 vian form
aj ~ o (clsh ") € PA), i€ N, (2.5)

190 which maps agent i’s state to a randomized action. (2.5) is called global policy since the
141 policy of agent ¢ depends on both her own state and the aggregate information of the whole
142 population. For each agent ¢, the space of all global policies is denoted as II.
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13 Remark 2.2 [t is computationally expensive to collect the aggregate information of the
14a  whole population in many practical scenarios. Considering the costly collection of the ag-
s gregation information of the whole population, one can restrict the policy to be in a local
e manner, that is, the policy that the agent i can execute depends solely on her own state
147 information:

aj ~ 7' (:[s}) € P(A), i€ [N].

us  This has been studied in [41] for standard MFC. Precisely, [41] designs locally executable
140 policies such that the resulting discounted sum of average rewards well approximates the
150 optimal value function over all policies. We expect that a similar result holds for GMFC.

151 Remark 2.3 When g =1,r"=r, PP =P, i,j € [N], it corresponds to classical mean-

152 field theory with uniform interactions [9, 23]. Furthermore, our framework is flexible enough

. . . . . . Z WN _ 1 N )
153 to include the nonuniform interactions of actions via v, =N ZjeVN i,j5a§ (+).
152 The expected discounted accumulated reward of agent ¢ is
1 L,WN i i i i i L,WN
JN,i(.UﬂT ,...,71' Z’Y Sta Mo at) 5.~y ay ~ 7 (|sg, piy ), (2:6)

155 subject to (2.2)-(2.5) with a discount factor 4 € (0, 1).
156 The objective of this cooperative multi-agent system (2.2)-(2.5) is to find Pareto opti-
157 mality given in the Definition 2.4 below.

155 Definition 2.4 (Pareto Optimality) (7%*,...,7#V*) € TIV is called Pareto optimality
w50 for the multi-agent system (2.2)-(2.5) if there does not exist (z',... 7)€ IV such that

V1<i<N, JN’i(u,ﬂl,...,ﬂ'N) > JNJ'(/J,,WL*,...,WN’*),
31 <i <N, JNyz-(,u,wl,...,ﬂ'N) > JN7i(M,7r1’*,...,7rN’*).

160 To study Pareto optimality, we introduce the expected discounted accumulated reward
161 averaged over all agents, i.e.,

Vn(p) = sup  In(p,mts.7) (2.7)

(i) EIIN

= sup ZJNzluu yeeey T )7

(71.17.“ WN)GHN N

162 subject to (2.2)-(2.5). Let (4%, ..., 7V*) € argmax Jy(u, 7!, ..., 7)), then (71, ... 7V¥)
(wl,...,7N)elIN

163 is shown to be a Pareto optimality in Definition 2.4. Therefore, searching for Pareto opti-

164 mality of cooperative MARL amounts to solving the optimal policy of (2.7). However, it is

165 always difficult to exactly obtain the optimal policy of cooperative MARL. We consider a

166 weak notion of e-Pareto optimality.
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167 Definition 2.5 (e-Pareto Optimality) (72*,...,72") € IV is called e-Pareto optimal-
s ity for the multi-agent system (2.2)-(2.5) if there does not ewist (7',...,7™) € IV such
160 that

V1 <1< N7 JN,i(/J’ﬂTl?'-'vﬂ-N) > JNJ(/,L,?T;’*,...,WQI’*> +¢,
J1<i <N, Ini(p, w7y > In(us wl*, o 7lV) toe

1o For any € > 0, let (71' Ty ™) € IV such that
JN(M,WEI’*,..., wt) > sup Iyt 7)) —e, (2.8)
(wl,...,eN)ellN
171 then (m}’*, e ﬂév*) € IV is an e-Pareto Optimality in Definition 2.5.

12 2.8. Graphon Mean-Field Control

173 We expect the cooperative MARL (2.2)-(2.7) to become a GMFC problem as N — oo.
172 In GMFC, there is a continuum of agents o € Z, and each agent with the index o € 7
15 follows

W W
8o~ put, aft ~ ﬂ-a("S?’N’? ), S?—&-l ~ Pa("sgvﬂf Lag), (2.9)

176 where u = L(s§'), o € Z denotes the probability distribution of s, and M?’W is defined as
177 the neighborhood mean-field measure of agent

V< [ Wasniis € B(s), (2.10)
v

17s  with the graphon W given in Assumption 2.1.

179 To ease the sequel analysis, define the space of state distribution ensembles M :=
w0 P(S)T := {f : T — P(S)} and the space of policy ensembles II := P(A)S>*Z. Then
11 pi= (UY)aez and T :=(7%)4e7 are elements in M and II, respectively.

182 The objective of GMFC is to maximize the expected discounted accumulated reward
183 averaged over all agents o € 7

V(p): = supJ(p,m) (2.11)
well
- sulpl/ {Z’Y (s mi” ,a?) so ~ paf ~ (st aW) da.
wE

184 3. Main Results

185 3.1. Reformulation of GMFC

186 In this section, we show that GMFC (2.9)-(2.11) can be reformulated as a MDP with
187 deterministic dynamics and continuous state-action space M x IL.
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188 Theorem 3.1 GMFC (2.9)-(2.11) can be reformulated as

V(p) = sup Y+ R(p,, w(y)), (3.1)
well {7
180 subject to
pig1 () = % (e, w(pe)) (), t €N, pg = p®, a €1, (32)

100 where the aggregated reward R : M x II — R and the aggregated transition dynamics @ :
101 M XII - M are given by

Riw() = [ 375 1,0, )yn ol 1 () (33)
T scSacA
& (@)() = 3 3 PCls. Yy s,y 5. (3.4)
s€S acA

102 The proof of Theorem 3.1 is similar to the proof of Lemma 2.2 in [24]. So we omit it here.
103 (3.4) and (3.2) indicate the evolution of the state distribution ensemble p, over time.
10« That is, under the fixed policy ensemble 7, the state distribution pg, ; of agent « at time t+1
105 is fully determined by the policy ensemble 7 and the state distribution ensemble p, at time
106 t. Note that the change of population state distribution ensemble will affect neighborhood
107 mean-field measure. In turn, the change of neighborhood mean-field measure will have an
s influence on population state distribution ensemble.

109 With the reformulation in Theorem 3.1, the associated @) function starting from (p,m) €

200 M xII is defined as
Qum) = Rls ()& sup |3 Rl () | 5§ ~ s ~ 7 Clsg, u")[3.5)
ﬂ'IE t=1

201 Hence its Bellman equation is given by

Qlpu,m) = R(p,m(p)) + sup Q(®(p,m(p)), ). (3.6)
w'e
202 Remark 3.2 (Label-state formulation) GMFC (2.9)-(2.11) can be viewed as a classical MFC
203 with extended state space S x I, action space A, policy @ € P(A)°*L, mean-field information
24 fi € P(SXI), reward 7((s, o), fi, a) :== r((s, o), [; W(a, B)fi(-, B)dB, a), transition dynamics
205 of (8¢, ) such that

541~ PC|(Gr on). d, /I W (ag, B)ji(+ B)dB), aesr = au, s ~ 711, o, /I W (an, B)iie(-, B)dB),

206 with the initial condition Sy ~ po, & ~ Unif(0,1). It is worth pointing out such a label-
207 state formulation has also been studied in GMFG [29, 15].
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208 3.2. Approximation

209 In this section, we show that GMFC (2.9)-(2.11) provides a good approximation for the
210 cooperative multi-agent system (2.2)-(2.7) in terms of the value function and the optimal
211 policy ensemble. To do this, the following assumptions on W, P, r, and w are needed.

212 Assumption 3.3 (graphon W) There exists Ly > 0 such that for all oo/, 3,8 € T
W (e, 8) = W/, 8] < L - (lo— o/ + 18 = 8)).

213 Assumption 3.3 is common in graphon mean-field theory [21, 15, 29]. Indeed, the Lips-
214 chitz continuity assumption on W in Assumption 3.3 can be relaxed to piecewise Lipschitz
215 continuity on W.

216 Assumption 3.4 (transition probability P) There exists Lp > 0 and Lp > 0 such that
a7 for any o, B €T, all s € S,a € A, pui, s € B(S)

|P(-|s,p1,a) — PP(:|s, 2, a)|1 < Lp - |1 — palli + Lp - |a — B,

218 where || - |1 denotes L' norm here and throughout the paper.

210 Assumption 3.5 (reward r) There exist M, > 0, L, > 0 and L, > 0 such that for all
2 SES,a€ A u,u € B(S),

]ra(s,,u,a)] < M, ‘Ta(&/ilaa) - 7”6(8,/1,270,)‘ <L H/J'I _/112H1 +ET ’ ‘CM _/8’

21 Assumption 3.6 (policy w) There exists Ly > 0 and Ly > 0 such that for any policy

222 ensemble w = (7%)qez € Il is Lipschitz continuous, that is, for any o, € T and uy, o €
223 B(S),

max [[7%(:[s, 1) =77 (-fs, p2) |l < Lu - |1 — palh + Lu| -« = B.

224 Assumptions 3.3-3.6 state that W, P,r and w are Lipschitz continuous with respect to
225 both the index of the agent and the neighborhood mean-field measure. The distance between
26 indexes | — 3| measures the similarity of agents. If P,r and w are identical, Assumptions
27 3.4-3.6 are commonly used to bridge the multi-agent system and classical mean-field theory
2e [23, 41, 42, 43].

229 To show approximation properties of GMFC in the large-scale multi-agent system, we
230 need to relate policy ensembles of GMFC to policies of the multi-agent system. On one
251 hand, one can see that any m € IT leads to a N-agent policy tuple (7!,... V) € IV with

MV.Isr— (o', o) eV, with 7t := TN . (3.7)

232 On the other hand, any N-agent policy tuple (7',...,7"V) € IIV can be seen as a step
233 policy ensemble 7 in II:

N

N
7I'N’a ::Zﬂ-i]‘ae(i_l,%] cII. (3.8)
=1

9
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234 Similarly, any N-agent reward tuple (r',...,r") can be regarded as a step reward function
235 of GMFC:

N

N
N, . __ E ) ) )
T — T 1a€(1—1,%]. (39)
=1

237 Theorem 3.7 (Approximate Pareto Property) Assume Assumptions 2.1, 3.3, 3.4, 3.5
238 and 3.6. Then under either the condition (C1) or (C2), we have for any initial distribution
230 U € 'P(S)

VN (p) = V()| — 0, as N — oo. (3.10)

20 Moreover, if the graphon convergence in Assumption 2.1 is at rate O(\/LN), then |Vn () —
21 V(p)| = O(ﬁ) As a consequence, for any € > 0, there exists an integer N, such that
202 when N > Ng, the optimal policy ensemble of GMFC denoted as m* (if it exists) provides
23 an e-Pareto optimality (w1, ..., 7N*) .= TN(x*) for the multi-agent system (2.7), with TN
204 defined in (3.7).

225 Theorem 3.7 implies that if we could compute an algorithm to learn the optimal policy
26 ensemble of GMFC, then the learned optimal policy ensemble is close to the optimal policy of
227 MARL. Directly learning the optimal policy of GMFC, however, will lead to high complexity
228 due to the infinite-dimensional feature of u and 7. Instead, we will introduce a smaller class
29 of GMFC with a lower dimension in the next section, which enables a scalable algorithm.

w0 3.3. Algorithm Design and Convergence Analysis

251 This section will show that discretizing the graphon index a € Z of GMFC enables to
252 approximate Q function in (3.6) by an approximated Q function in (3.11) below defined on
253 a smaller space, which is critical for designing efficient learning algorithms.

254 Precisely, we choose uniform grids o, € Zps == {§7,0 < m < M} for simplicity, and
255 approximate each agent a € Z by the nearest a;, € Iy close to it. Introduce M M=
26 P(S)D, My := P(A)S*IM . Meanwhile, fi := (i) e € My and & == (F%),cay) €
257 11 M can be viewed as a piecewise constant state distribution ensemble in M and a piecewise
258 constant policy ensemble in II, respectively. Our arguments can be easily generalized to
250 nonuniform grids.

260 Consequently, instead of performing algorithms according to (3.6) with a continuum of
261 graphon labels directly, we work with GMFC with M blocks called block GMFC, in which
262 agents in the same block are homogeneous. The Bellman equation for Q function of block
263 GMFC is given by

Q@) = R, #()) +v sup Q(®(f, 7 (i), &), (3.11)

iIGHM

10
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26 where the neighborhood mean-field measure, the aggregated reward R: M M X i M — R
265 and the aggregated transition dynamics ® : My, x Iy — M are given by

M-1
ﬂam,W - Z W (tm, Q) i’ ,m € [M], (3.12)

m’O

M-1
1 ~ ~ ~ ~
M DD s a5 pom (s)7m (als, i), (3.13)

m=0 s€S acA

@a@)() = 3050 Pon(fs,a, g W) ()70 (als, g V). (3.14)

s€SacA

=2
:;x
£l
=
Il

266 We see from (3.11) that block GMFC is a MDP with deterministic dynamics ® and
267 continuous state-action space M M X HM The following Theorem shows that there exists
26 an optimal policy ensemble of block GMFC in II,,.

260 Theorem 3.8 (Existence of Optimal Policy Ensemble) Given Assumptions 3.4, 3.5,
270 assume v - (14 Lp + Lyy) < oo, then for any ﬁxed integer M > 0, there exists an °T* € HM
an that mazimize Q(f, ©) in (3.11) for any fu € My,

272 Furthermore, we show that with sufficiently fine partitions of the graphon index Z, i.e.,
273 M is sufficiently large, block GMFC (3.11)-(3.14) well approximates the multi-agent system
274 in Section 2.2.

275 Theorem 3.9 Assume v - (1 4+ Lp+ Lyip) < oo and Assumptions 2.1, 3.3, 3.4, 3.5 and
a6 3.6. Under either (C1) or (C2), for any € > 0, there exists N., M. such that for N > N,
277 the optimal policy ensemble T of block GMFC (3.11) with M. blocks provides an e-Pareto
28 optimality (75*, ... 7#V*) := T'N(7*) for the multi-agent system (2.7) with N agents.

279 Theorem 3.9 shows that the optimal policy ensemble of block GMFC is near-optimal
20 for all sufficiently large multi-agent systems, meaning that block GMFC provides a good
281 approximation for the multi-agent system. Therefore, If we could develop an algorithm for
282 block GMFC to extract an optimal policy ensemble of block GMFC, then the extracted
283 policy is near optimal for MARL.

284 When model parameters P%,r* and W are known, one can easily extract the optimal
285 policy based on Bellman equation. If any of these model parameters P, r® and W is
28 unknown, we take a model-free approach. The key issue is to handle population state
2s7  distribution ensemble g, which is an input of @ function in (3.11). We assume that we
288 have a block GMFC simulator G(,7) = (@', R). That is, for any pair of population state
280 distribution ensemble and policy ensemble (f,7), we can sample the aggregated reward R
200 and the next population state distribution ensemble fi’. To learn the optimal policy of block
201 GMFC, one can adopt any existing techniques for standard MFC, such as a kernel-based Q
202 learning method in [23] and a uniform discretization method in [9].

203 Remark 3.10 If we can only observe the state of agent o, € Ias and do not have access to
204 population state distribution ensemble, we can estimate i following [2] or [42]. However,

11
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205 different from [2] and [{2], we also need to estimate iYW due to the graphon structure W
206 and leave it for future study.

207 We choose to adapt DRL algorithm neural Proximal Policy Optimization (PPO) [47, 38|
208 to block GMFC given in Algorithm 1. Following Corollary 4.11 in [38], together with
200 Theorem 3.9, we can state the global convergence of neural PPO for block GMFC. Since
s00 assumptions that make the result hold are similar as [38], we do not state these assumptions
301 here.

Algorithm 1 Neural PPO for block GMFC
Input Width of neural network M, radius of constraint R, number of SGD and TD
iterations 7', number of PPO iteration K, penalty parameter 3
Initialize
for k=0to K —1do
set temperature parameter 7541 < %ﬁ? and penalty parameter G < B\/E .

Sample (ﬂ'tvﬁ-ta Rt?ﬂ'éaﬁ.;ﬁ)?zl with g ~ HO(‘ﬂ’)? ﬂ‘;ﬁ = q)(ﬂ't?ﬁ-t)’ Ty ~ Hek(’ﬂ't)

Solve for Q function parameterized by neural network Q., = NN (wy, M) using the
TD update.

Solve for energy function parameterized by neural network fy, ., = NN(0p41, M)
using the SGD update.

Update policy: TI% exp(rkjrllfgk“).
end for

Theorem 3.11 Suppose that Assumplions 2.1, 3.3, 3.4, 3.5 and 3.6 hold. Further assume
v-(14+ L+ Lp) < 1. Furthermore, suppose that the width of neural network is sufficiently
large. For any € > 0, there exists M. and N such that for any M > M, and N > N, and
the policy attained by Algorithm 1 denoted as Tppo

* * C ~
|In (5w 7N — TM (usmppo)| < i + Cs, (3.15)

302 where Jy and JM “are given in (2.7) and (4.7) respectively, K is the number of iteration, C
303 and C' are constants.

304 By setting K = E%’ the optimal empirical value function of MARL is approximated by the
305 value function of block GMFC under the learned policy in Algorithm 1 with the error O(e).
306 In other words, Theorem 3.11 states that, with a sample complexity of (9(5%), Algorithm 1
307 generates a O(e)-Pareto optimality of cooperative MARL.

308 To evaluate the performance of Algorithm 1 and to validate our theoretical findings, we
300 describe the deployment of block GMFC in the multi-agent system in Algorithm 2, which
310 we call it N-agent GMFC.

12
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Algorithm 2 N-agent GMFC

Input Initial state distribution g, number of agents N, episode length 7', the learned
policy € II; learned by PPO
Initialize s{ ~ pg, i € [N]
fort=1to T do
for i = 1to N do

N . 7 m
Choose m(i) = argmin | — 7
me
Sample action aj ~ 7% (-|s}), observe reward r{ and new state s
end for
end for

su 4. Proofs of Main Results
312 In this section, we will provide proofs of Theorems 3.7-3.9.

a1z 4.1. Proof of Theorem 3.7

314 To prove Theorem 3.7, we need the following two Lemmas. We start by defining the
a5 step state distribution p)¥ := (uiv "M qer for notationial simplicity

ORISR FOL N (4.1)
IEVN

316 Lemma 4.1 shows the convergence of the neighborhood empirical measure to the neigh-
a1z borhood mean-field measure.

sis Lemma 4.1 Assume Assumptions 2.1, 3.3, 3.4 and 3.6. Under either condition (C1) or

s (C2), for any policy ensemble m € II, we have

Z/ ||,uz W ,u?’WHl]da — 0, as N — oo, (4.2)

N’N

20 where pt = pf = P(S).

Moreover, if the graphon convergence in Assumption 2.1 is at rate (’)(\/Lﬁ), then

Z/ [l = 5" 1] de = 0(\/—%).

L
N

sz1 Proof of Lemma 4.1 We first prove (4.2) under the condition (C1) and then show (4.2)
322 also holds under the condition (C2).

13
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»s Casel: &Y WN(N, J]\,) Note that under the condition (C1), p""~ = [ Wn(%, BuNPag
324 by the definition of ut n (4.1). Then
Z / R - gV da
wl

_ ;/(;VN ]EH‘/IWN(%, NBgg /W o, H)ujas Jda

N
>/
=1 N

N

IN

| [ w00 a5 - [ Wit Bwfas| o

’N]

» i]EH‘/IWN(%,ﬂ)Mfdﬁ—/IW(a,B)udeHJda

N °N

= L+ D

325 For the term I, we adapt Theorem 2 that works with local policy in [15] to our setting of
326 global policy and have that under the policy ensemble 7 and N-agent policy (7!, ..., 7V) :=
327 I'ny(m), with I'y defined in (3.7)

H/WN(_’ﬁ“t Pap — /WN( Bt dﬂH } — 0, as N — oo.

328 Moreover, if the graphon convergence in Assuinption 2.1 is at rate O(\/LN), then the term

320 Iy is also at rate (’)(\/LN)
330 By noting that Wy (a, 8) = W ( U\]f\;ﬂ me),

TN
N
L = Z/i—l
=1 (%

‘AWN(“jvﬂ’ﬂ>ﬂf ap - [l W(a, B)pfas| da
N
R iz_;/%m

— [ [ wntapyuias - [ wiapuias] do
z'Jz T
> /J /IWN(a’ﬂ)uf@)dﬁ— /I W (. B)u ()5 do

— 0,

’/IWN(aaﬁ)Mthﬂ—/IW(a,B)ufdﬁHIda

where the last inequality is from the fact in [39] that the convergence of ||Wy — W/|g — 0
is equivalent to the convergence of

Wy = WL, == sup da — 0.

llglleo<1

/ (Wi (e ) = W(a, §))g(8)d5

14
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s3a1 Combining I; and I3, we prove (4.2) under the condition (C1).
sz Case 2: §£§ are random variables with Bernoulli( Wy (4, 7%))

N
i, W W
Z / I = o

(ifl
1 N
1 ||NZ§]JV5S{ [ Wi ias) o

Z/l fNéa [ Wt it ds) d

NN

IN

,mE” / Wi (g A ds = [ 37l as] do

5 /i_l
=1 N 'N

= 1 + I5.

333 Note from Case 1 that Is —+ 0 as N — oo and I = O(\/LN) if the graphon convergence in
s Assumption 2.1 is at rate O(\/LN) Therefore, it is enough to estimate 1.

L = Zfz];[ s /WN(_vﬂ Bdﬁ”l
N
< E[E[fzsi%pl,l}{ Zgijf 3 Wiy 20D skt

335 We proceed the same argument as in the proof of Theorem 6.3 in [23]. Precisely, conditioned

N
336 ON Sp,...,8, {5 (s ) Wi (& N N) f(s] )} . is a sequence of independent mean-zero
J= .
s37 random variables bounded in [-1, 1] due to E[{ZIY ] = Wn(%,%). This implies that each
338 f{}f (s{ ) — WN(%, %) I (si ) is a sub-Gaussian with variance bounded by 4. As a result,

, . N
330 conditioned on s}, ..., s}, {% ZN_l fgf(s{) i Z;V W (%, % )f(st)} . is a mean-zero
a0 sub-Gaussian random variable with variance . By the equation (2.66) in [51], we have
N i g
L < E[E[ sup { eNf(s! WN(—,—)f(sJ)Hs ,...,sNH
fSSL) Z ij ; N’ NIV ¢
81n(2)|S]

VN
sa1 Therefore, combining I; and I in Case 2, we show that when f% are random variables
32 with Bernoulli(Wx (4, %)), (4.2) holds under the condition (C2). O

343 Lemma 4.2 shows the convergence of the state distribution of N-agent game to the state
3a¢  distribution of GMFC.

15
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s Lemma 4.2 Assume Assumptions 2.1, 3.8, 8.4 and 3.6. For any uniformly bounded family
6 G of functions g% : S — R, we have

sup Z/Z Bl - o (s5)]|dar = 0, (4.3)

{ga}aeleg N ’N

where sb ~ 1y, 8§ ~ pg. Moreover, if the graphon convergence in Assumption 2.1 is at rate

(’)(\/Lﬁ), then

[Bls°(s) - " (57 der = O( ).

a7 Proof of Lemma 4.2 The proof is by induction as follows. To do this, first introduce
(5.00.m) = 3 37 g% ()PP (/s 1, a)(als, o).
acAs'eS

ass (4.3) holds obviously at t = 0. Suppose that (4.3) holds at ¢. Then for any uniformly
ss0  bounded function ¢g® with |g% < My at ¢t +1

N

>

bod
=1 NN

sup Z/Z

{g }aEIeg

aN]

Elg® (s}1) — 9% (s741)]|de

N .
- Z/ll i ]E[lgﬁ"‘ (St)ﬂt , T )] - ]E[lga(sfé,#?’waﬂa)] ‘da
i—1 Y (7w
N 7
< [ [BIEEE] ~Efhi 7] o
i—1 7 (5wl
+ Z/, B[ (st it 7]~ B[l (s, 15 7)) | da
i1 (]
N

+Z/i_l ,

‘]E[lga(s?, uf’w, ™) — E [lga (sg, M?’W7 )] ‘da
i—1 5w

= T+ II+1II, (4.4)

ss0  where the first equality is by the law of total expectation.

First term of (4.4).

r= XL
< wp(eed0 [ Bl ]

-1 7 (%%
— 0, as N — ¢

i(si, ui’WN,Wi)] — E[l;‘a(si, ,u?’w, ﬂ’)] )doz

. law — %|da>

351 where the second inequality is from the continuity of P, and the last inequality is from
352 Lemma 4.1.
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353 Second term of (4.4). One can view lga(S,/,L?’W,ﬂ'i) as a function of s € S for any fixed
e " and 7, o € Z. Note that |1ga (s, pW mhy) < Mg, where M, is a constant independent
sss of u™", 7. Since (4.3) holds at ¢, then

N
o= Y[Rl )~ Bl (s ) o
i=1 NN
— 0, as N — oo.

Third term of (4.4).

N

o=y / B G ] = Bl i )] da
— (1 [ ]
<y / I (57) - 7°(s¢)l1] do
i=1 Ly
< MyLn max | —o do
Z 4 | ¥ 19
1
- O(=
(N),
356 where the second inequality is by the uniform boundedness of g and the third inequality is
357 from Assumption 3.6. a
358 Now we are ready to prove Theorem 3.7. We start by defining 7 the aggregated reward

350 over all possible actions under the policy 7

r(s, p,m) = Z (s, u,a)m(als, p).

acA

17
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Proof of Theorem 3.7

VN (1 )—V(u)\
oo
= Z [ZV St, ,uiWN, ai)} —sup/]E {thra(s?, ,uf’w, af‘)} da
H i—1 well JT =0
1 N 0o W o)
S‘ISrIEJIPIN;E ;WZ(% TES ’} /E Zv (s, pg™ a?)} da
0o N

—suwpl> 'Y [ (B ™, 2] B[ g, i, )] o

=1 N °N

<sup S0 >° [ (B Y ] - B " 7)])da

00 N
+ sup 27t2/4 (E[Aa(sf;, ,u?’W, ﬂ’)] —E[?‘l(sf, ,uf"W, 7Ti):|>d0l
well —0 (1_1 ﬁ]
N
+ouplS S / (B[ (s, i )~ E[F(sp ™, 7)) )da
well t=0 i=1 ﬁ
— [ 4 I+ 111, (4.5)

360 where we use (3.8) in the second inequality.

First term of (4.5).

I = sup ny Z/ (st ,uiWN, W’)] —]E[ (st p,f‘w, ﬂi)])da
“Ent 0 =177 ﬁ
— Sy / Psh ", )] ~E[F (s u", 7)) )da
melll;—y
+ sup tZ/ Sta Nt s ﬂ'z)] _E[?a(su /J?W» Wi)])da
mell t=0 i=1 N ﬁ
< sl ny Z/ Blluf™ ~ iy fada + sup L, Zv Z/ Iy —alda
= i=1 ﬁ] = l

O(J_N)’ (4.6)

31 where the last equality is from Lemma 4.1 when the convergence in Assumption 2.1 is at

32 rate 0(1/\/N)

363 Second term of (4.5). From Lemma 4.2, we have I] = (’)(\/Lﬁ)

18



Journal Pre-proof

Third term of (4.5).

[ N
111 < supLTnytZ - max|n'(s) — 7%(s)|l1de
4 e R e
oo N i
¢
< LTLHsupiy Z/Zl . |N — a|da
t=0 i=1 NN
1
= 0O(=).
&
362 Therefore, combining I, I1 and II1 yields the desired result. O
365 4.2. Proof of Theorem 5.8
366 First, we see that (3.11) corresponds to the following optimal control problem

VM(@) = sup JM (@i, %)

1~I‘€ﬁM
W ~&m m 7 %m ~&m —Xm odm
= sup —ZE Zw m i am) [~ i, g~ 7 ()5 >]<.4.7>
welly m=1

367 The associated Q function of (4.7) is defined as
Q(p,®) = supM ZE lZ’YT g agm) | s

= R(,7)+ sup Zwtémt,fr’), (4.8)

7~I'IGHM t=1

et mN%am(IS?’")]

38 subject to fi; 1 = &, i), iy = fb.

369 We first show the verification result and then prove the continuity property of Q in (4.8),
370 which thus leads to Theorem 3.8.

s Lemma 4.3 (Verification) Assume Assumption 3.5. Then Q in (4.8) is the unique func-
s tion satisfying the Bellman equation (3.11). Furthermore, if there exists ™" € argmaxg  Q(f, )

a1z for each p.€ MM, then &% € HM is an optimal stationary policy ensemble.

374 The proof of Lemma 4.3 is standard and very similar to the proof of Proposition 3.3 in
ars [23].

376 Proof of Lemma 4.3 First, define MT —bounded function space Q := {f : M v x Iy —
s [— 1MT 1o 7]} Then we define a Bellman operator B: Q — Q

(Bq)(a, ®) == R(s, &)+ sup q(@(,7), %),
7' €l
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78 One can show that B is a contraction operator with the module-y. By Banach fixed point
579 theorem, B admits a unique fixed point. As Q function of (4.8) satisfies BQ = Q, Q is
ss0 unique solution of (3.11).

381 We next define BT : Q — Q under the policy ensemble &’ € 1| A with

(B q)(, %) == R(j1, 7) + ~vq(®(fa, 7), 7).

ss2  Similarly, we can show that B™ is a contraction map with the module-y and thus admits a
383 unique fixed point, which is denoted as Q™ . From this, we have

Q" (p7) = R(p7) + Q" (®(,7),7")
= R(p®)+v sup Q®(,7),7) = Q(, ),
[ EHM
3sa  which implies 7* is an optimal policy ensemble. O

s Lemma 4.4 Let Assumptions 3.4, 3.5 hold. Assume further - - (1+Lp+ L) <1. Then
86 (Q in (4.8) is continuous.

sz Proof of Lemma 4.4 We will show that as ﬂ,n — [, T, — 7 in the sense that - Z o e
sss 5T |1+ 37 Lo maxses [[Fom (o) — &g (i) — 0,

QB Tn (i) = QU (1))
389 From (4.8) and (3.13),

1Q(fa, ) — ~<ﬂ,fr)\

o0
< \R 7)) + sup Zva, () — R(fiy, n(fi,)) + sup thwn,t,fr’(ﬂn,m\
7 el t=1 w'elly t=1
< |Raw@) - Bl )|+ sup Sl # ) — Rl )|
7€l t—1
1 M-1
< Lpegp o i = Wi+ My o Z o — g |1 do
m=0
1 M—-1
+My g 2 17 (@) = 7w (i) | da
fe'e) 1 M-—1 M—
+ sup >4 (Lo + Ln) ap 2o M =+ My o Z g — i)
'€l t=1 m:O m=0
1 M-1 1 M-1
< (L7«+Mr)-Mm:0 Hﬁ“m—ﬁzmuerﬂmZOI& x[[7* (a0 W) — 7 (") hdo
fe'e) 1 M-—1
s 3 (Le o Lk M) - 7 >l = g
el t=1 m=0
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390 By induction, we obtain

Z [
= Z SIS P (s s,an i g ()7 (als, g™

m=0 s'eS seSacA

DI I AN AN OLICTEN A

ES

s€eS acA
1 M—1
< (Lp+Ln+1 ity — fipe—1ll1
m=0
M—
< < (Lp+Lp+1)1 nL Z
m=0

s01  Therefore, if v- (1 + Lp + Ly1) < 1, then

M-=1

M—-1
Yo ~ Y 1 ~Q « « « am Qm
Q) = QUi )| < C (57 D ™ = i Z may |70 (i) = 7 ()L )
m=0

302 where C' is a constant depending on L, M,, Lp, L. O

303 Now we prove Theorem 3.8.

304 Proof of Theorem 3.8 By Lemma 4.4, along with the compactness of i M, there exists

w5 7 € ) such that #* € argmax Q(f, 7). By Lemma 4.3, there exists an optimal policy
‘l~l'€ﬁM
306 ensemble 7 € II;;. O

307 4.3. Proof of Theorem 3.9

308 We first prove the following Lemma, which shows that GMFC and block GMFC become
300 increasingly close to each other as the number of blocks becomes larger.

200 Lemma 4.5 Under Assumptions 3.3, 3.4 and 3.6, we have

Lu+Lp+2(Lp + Lu)Lw L 2Lw
M M’

M
S = ada < [+ Lo+ L)' - 1]
m=1 (mT_’%]

M } )
i Lu+ Lp +2(Lp + L)L

Z/(m_l m]HM?—utamHldag[(1+LP+LH)t_1] n+Lp ]541: Wl

M °M
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Proof of Lemma 4.5

Z/ IIM iV |lda (4.9)
7W m7 m7 r m7
< > /ml W = o Znua —
leua’”’ =iV,

a1 where oW = L Z%, 1 W(am,am Jpum

w2 By the definition of ", u&™" in (2. 10) 22" in (3.12) and g@W | together with the
203 Lipschitz continuity of W in Assumption 3.3,

M M L

7W m7 m
> /m_l g™ = lhda < 3 [ g ladac S (410)
m=1" (5771 m=1" ("3 > 37l

Ly
am,W —am,W
MZ”M - < S (4.11)
P
—amy ’*am;W Qi ~Qlm,
MZH SEI o S — (412)
m=1
a4 Plugging these into (4.9),
M
2L
> / g = i hda < A+ =, (4.13)
L—lﬂ] M
= M M

M m M m 7 9m
s where Ay = S8, [t i — g lnda+ & S g — g .
406 On the other hand,

M

S [l da (4.14)
m=1" ("5 11

M

S s da s o leu S = A (435)
m=1" (5711

a7 Therefore, it is enough to estimate A;. We next estimate A;11 by an inductive way. Note
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a8 that Ag = 0.

At

= Z/ ||Mt+1 Ht+1||1d04+ Z||Mt+1 fig [l
Of a W«
= Z/mlm |32 57 (P2l ™ aym Gals, ™ i (s)

»37) s€ES acA

=P (s, a, ™Y Y ()m als, ™) ) | da

ZHZZ( (o1 W  a)w (als, e g ()

m 1 seSacA
=P (s, g g ()70 (als, i) ) |

Ly
< Z /m (o T ™ = e e S = i )
Tﬁ
M ~
L L am,W ~Qm, W LP Aam Om
T N (L7 7 B T s Ly v

3
1§

- - 1
< (I+Lp+Ln)Air+ (Lu+ Lp+2(Lp + LH)LW)Ma

a00  where the second equality is from (3.4) and (3.14), and we use Assumptions 3.3, 3.4 and 3.6
a10 in the third inequality, and we use (4.10)-(4.12) in the last inequality.
411 By induction, we have

Lu+Lp+2(Lp+Ln)L
Apr < |(L+ Ip L)t — 1| 2222 154’3 ) Lw
412 O
413 Based on Lemma 4.5, we have the following Proposition.

a4 Proposition 4.6 Assume Assumptions 3.3, 3.4, 3.5, 3.6, and v-(Lp+ Lii+1) < 1. Then
a5 we have for any pu € P(S)

sup|J~M(u,7r)—J(u,1r)| — 0, as M — +o0, (4.16)
well

as  where JM and J are given in (4.7) and (2.11), respectively.

a7 Proof of Proposition 4.6 Recall from (3.12) that

jM(Maff) Z (B, T (f2r)),
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ss  subject to fiy7y = 5am(ﬂ?m,ﬁam), t e Ny, f§ = p, and [Lf‘m’w given in (3.12).

[e.e]
J(mm) = > V' R(u,m(m)),
t=0
a0 subject to uf, = ®%(uf, 1), t € Ny, py = p, and ,u?’W given in (2.10). Since 7 :=

a20  (TO) e € f[M can be viewed as a piecewise-constant projection of w € II onto fIM.
421 Then,

sup|J ) — J ()|

well

SUPZ’Y‘RI’%:W(P%))_ R(py,m m))’
7r€l'[t 0

IN

IN

sup S| i 7)) — Rt )]+ sup S Rl #01)) — Rl
mell o mell o
= I+11.

a2 In terms of the term I, we first estimate ‘R(ﬂt,ir) - R(p,t,fr)‘:
| Rl 7 () — Rlp 7o)

B ‘Z /m m) o> o rnsian i g (s)R (als, i) da

73 s€S acA

) Z/ 0 > s () (als. i )do

1
m=1" (5737 s€S acA

= ‘Z/m 1 m) SN (s,a, gty = (s a, w ") i ()7 (als, i) da
1) seSacA
*\Z/ 5 ) 6 07 s
(57 5 se5 aca
‘ NS s i (s) (R (als, i) = 7 (als, ) ) doo
oot o)
a,W am E?"
< LT‘Z/m_lmHut’ Y hda + -

~Qm 7W m;
M, Z / g — e lyda+ My L - Z / 16 = fem W | da
(7. 5] me1" (57

423 By Lemma 4.5,

C(’)/, LHa LP7 LW7 LT, M’I‘)

I<
- M
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424 For the term 11,

sup >4 | Ry, 7 (1y)) — Ry, (1))

mell 7
00 M

< supZ’thr Z/ max || 7% — 7" || da

welly 2, 1Y (57 i) 58S

00 M
bsupdaa Y0 [ = da
mell - me1 Y (57 3]
< C(’y, LH,LP,Lw,LT,MT)'
- M
425 O

426 Proof of Theorem 3.9 Suppose that #* € M, c Dand (mh*, o, 7V*) € TIV are optimal
a2z policies of the problems (4.7) and (2.7), respectively. From Proposition 4.6, for any & > 0,
428 there exists sufficiently large M, > 0

20 where by (3.8), #N* =N wir1 i
430 From Theorem 3.7, for any € > 0, there exists IV such that for all N > N,

~ - ~ 3 €
|JN(/1'7771’*a s 77TN7*) - J(M77r*)| < §7 |JN(H'77T1’*7 s 77TN7*) - J(Mvﬂ-N’*H < §
431 Then we have
In (e, 787 = I (b )
> JN(,UH%L*) s aﬁN7*) - J(Mvﬁ'*) + J(,U,,7~l'*) - jME(M;ﬁ'*)
I Iz
+ M () — TMe (™) 4 TMe (7N — I (T T
Iy A

€. € €
- s g — — — = —£
- 3 3 3

a2 where I3 > 0 due to the optimality of #* for VM. This means that the optimal policy of
as3 block GMFC provides an e-optimal policy for the multi-agent system with (7},...,7y) :=
a2 I'y (’ﬁ' *) O

435 5. Experiments

436 In this section, we provide an empirical verification of our theoretical results, with two
37 examples adapted from existing works on learning MFGs [16, 10] and learning GMFGs [15].
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as 5.1. SIS Graphon Model

430 We consider a SIS graphon model in [16] under a cooperative setting. In this model,
aa0 each agent o € 7 shares a state space S = {5, I} and an action space A = {C, NC'}, where
as1 S is susceptible, I is infected, C represents keeping contact with others, and NC' means
a2 keeping social distance. The transition probability of each agent « is represented as follows

Pa(st-i-l = I|St - Sa at = Ca :UJ;ELW) = ﬁl/’L;LW(I)?
Pa(8t+1 = I‘St = S, ay = NC, M?’W) = ﬂQﬂth(I)a
P(spe1 = Sls; = L") = 4,

413 where (1 is the infection rate with keeping contact with others, (s is the infection rate
a2 under social distance, and § is the fixed recovery rate. We assume 0 < (3 < (31, meaning
a5 that keeping social distance can reduce the risk of being infected. The individual reward
a6 function is defined as

r(s, 18" a) = —a1lny(s) — e2lney(a) — eslin(s)1cy(a),

as7 where ¢; represents the cost of being infected such as the cost of medical treatment, cy
ass  represents the cost of keeping social distance, and ¢3 represents the penalty of going out if
420 the agent is infected.

450 In our experiment, we set 51=0.8, 82=0, § = 0.3 for the transition dynamics and c¢;=2,
as1 c0=0.3, c3 = 0.5 for the reward function. The initial mean field ug is taken as the uniform
ss2  distribution. We set the episode length to 50.

a3 5.2. Malware Spread Graphon Model

We consider a malware spread model in [10] under a cooperative setting. In this model,
let S ={0,1,...,K — 1}, K € N, denote the health level of the agent, where s, = 0 and
s = K — 1 represents the best level and the worst level, respectively. All agents can take
two actions: a; = 0 means doing nothing, and a; = 1 means repairing. The state transition
is given by

G = d ST L(K = st)xe), ifa=0,
= 0, ifa, =1,

asa where ¢, ¢ € N are i.i.d. random variables with a certain probability distribution. Then
455 after taking action a:, agent a will receive an individual reward

P (s 18" ) = —(er + (")) s/ K~ eaay.

ss6  Here considering the heterogeneity of agents, we use W («, 8) to denote the importance effect
as7 of agent [ on agent . <,uta’W) = fﬁel Y oscs SW(a, B)uf(s)d,@ is the risk of being infected
a3 by other agents and co is the cost of taking action ay.

450 In our experiment, we set K=3, ¢;=0.3, and c2=0.5. In addition, to stabilize the training
a0 of the RL agent, we fix y; to a static value, i.e., 0.7. In this model, we set the episode length
461 to 10.
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a2 5.3. Performance of N-agent GMFC on Multi-Agent System

463 For both models, we use PPO [47] to train the block GMFC agent in the infinite-agent
462 environment and obtain the policy ensembles and further use Algorithm 2 to deploy them
465 in the finite-agent environment. We test the performance of N-agent GMFC with 10 blocks
a6 to different numbers of agents, i.e., from 10 to 100. For each case, we run 1000 times of
se7  simulations and show the mean and standard variation (Green shadows in Figure 1 and
ases  Figure 2) of the mean episode reward. We can see that in both scenarios and for different
460 types of graphons, the mean episode rewards of the N-agent GMFC become increasingly
a0 close to that of block GMFC as the number of agents grows. (See Figure 1 and Figure 2).
471 This verifies our theoretical findings empirically.
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Figure 1: Experiments for different graphons in SIS finite-agent environment
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Figure 2: Experiments for different graphons in Malware Spread finite-agent environment

a2 5.4. Comparison with Other Algorithms

473 For different types of graphons, we compare our algorithm N-agent GMFC with three
a7za  existing MARL algorithms, including two independent learning algorithms, i.e., independent
ars. DQN [40], independent PPO [47] and a powerful centralized-training-and-decentralized-
a6 execution(CTDE)-based algorithm QMIX [46]. We test the performance of those algorithms
a77 - with different numbers of blocks, i.e., 2, 5, 10, to the multi-agent systems with 40 agents.
a7s The results are reported in Table 1 and Table 2.

479 In the SIS graphon model, N-agent GMFC shows dominating performance in most cases
a0 and outperforms independent algorithms by a large margin. Only QMIX can reach compa-
as1 rable results. And in the malware spread graphon model, N-agent GMFC outperforms other
4s2 algorithms in more than half of the cases. Only independent DQN has comparable perfor-
453 mance in this environment. And we can see that in both environments, the performance
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asa  gap between N-agent GMFC and other MARL algorithms is shrinking as the number of
a5 blocks goes larger. This is mainly because the action space of block GMFC increases more
as6  quickly than MARL algorithms as the block number increases. And it is hard to train RL
a7 agents when the action space is too large.

488 Beyond the visible results shown in Tables 1 and 2, when the number of agents N grows
as0 larger, classic MARL methods become infeasible because of the curse of dimensionality
a0 and the restriction of memory storage, while N-agent GMFC is trained only once and
201 independent of the number of agents N, hence is easier to scale up in a large-scale regime
2902 and enjoys a more stable performance. We can see that N-agent GMFC shows more stable
a03 results when N increases as shown in Figure 1 and Figure 2.

Table 1: Mean Episode Reward for SIS with 40 agents

Graphon Type M Algorithm
N-agent GMFC I-DQN I-PPO QMIX
2 -15.37 -17.58 -20.63 -20.51
Erdés Rényi 5 -15.74 -16.17 -20.42 16.94
10 -15.67 -17.55 -21.38 -14.45
2 -13.58 -16.05 -18.38 -17.69
Stochastic Block 5 -13.67 -15.91 -20.13 -13.79
10 -13.57 -15.52 -14.87 -13.86
2 -12.45 -17.93 -14.82 -14.52
Random Geometric 5 -9.82 -12.81 -12.99 -10.84
10 -10.52 -11.68 -12.66 -12.60

Table 2: Mean Episode Reward for Malware Spread with 40 agents

Graphon Type M Algorithm
N-agent GMFC I-DQN I-PPO QMIX
2 -5.21 -5.11 -5.31 -6.05
Erdés Rényi 5 -5.21 -5.30 -5.26 -6.13
10 -5.21 -5.14 -5.27 -5.21
2 -5.16 -5.21 -5.37 -5.88
Stochastic Block 5 -5.10 -5.19 -5.31 -5.70
10 -5.09 -5.05 -5.28 -5.27
2 -5.02 -5.21 -5.27 -5.35
Random Geometric 5 -4.85 -5.03 -5.04 -5.05
10 -4.82 -4.83 -5.14 -4.83

a4 5.5. Implementation Details
495 We use three graphons in our experiments: (1) Erdés Rényi: W, 3) = 0.8; (2) Stochas-
a06 tic block model: W(a,5) = 0.9, if 0 < o, < 0.5 0r 0.5 < o, < 1, W(e,8) = 04,
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a07 otherwise; (3) Random geometric graphon: W(a, 5) = f(min(|f — a|,1 — |8 — a])), where
ws  f(xz) = =

499 For the RL algorithms, we use the implementation of RLIib [36] (version 1.11.0, Apache-
soo 2.0 license). For PPO used to learn an optimal policy ensemble in block GFMC, we use a
so1  64-dimensional linear layer to encode the observation and 2-layer MLPs with 256 hidden
so2 units per layer for both value network and actor network. For independent DQN and
s03 independent PPO, we use the default weight-sharing model with 64-dimensional embedding
so layers. We train the GMFC PPO agent for 1000 iterations, and other three MARL agents
sos for 200 iterations. The specific hyper-parameters are listed in Table 3.

Table 3: RL Algorithm Settings

Algorithms GMFC PPO [-DQN I-PPO QMIX
Learning rate 0.0005 0.0005 - 0.0001  0.00005
Learning rate decay True True True False
Discount factor 0.95 0.95 0.95 0.95
Batch size 128 128 128 128
KL coefficient 0.2 - 0.2 -
KL target 0.01 - 0.01 -
Buffer size - 2000 - 2000
Target network update frequency - 2000 - 1000

s06 6. Conclusion

507 In this work, we have proposed a discrete-time GMFC framework for MARL with nonuni-
sos form interactions and heterogeneous reward functions and transition functions across the
so0 agents on dense graphs. Theoretically, we have shown that under suitable assumptions,
s10 GMFC approximates MARL well with approximation error of order O(\/LN) To reduce the
s11 dimension of GMFC, we have introduced block GMFC by discretizing the graphon index
s12 and shown that it also approximates MARL well. Empirical studies on several examples
s13  have verified the plausibility of the GMFC framework. For future research, we wish to ex-
s14 plore more on how to extract the optimal policy of cooperative MARL without the simulator
s15  for population state distribution ensemble and to extend our framework to heterogeneous
s.6  MARL on sparse graphs.
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