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Graphon Mean-Field Control for Cooperative Multi-Agent
Reinforcement Learning

Yuanquan Hu, Xiaoli Wei∗, Junji Yan, Hengxi Zhang

Abstract

The marriage between mean-field theory and reinforcement learning has shown a great
capacity to solve large-scale control problems with homogeneous agents. To break the
homogeneity restriction of mean-field theory, a recent interest is to introduce graphon the-
ory to the mean-field paradigm. In this paper, we propose a graphon mean-field control
(GMFC) framework to approximate cooperative heterogeneous multi-agent reinforcement
learning (MARL) with nonuniform interactions and heterogeneous reward functions and
state transition functions among agents and show that the approximate order is of O( 1√

N
),

with N the number of agents. By discretizing the graphon index of GMFC, we further
introduce a smaller class of GMFC called block GMFC, which is shown to well approximate
cooperative MARL in terms of the value function and the policy. Finally, we design a Prox-
imal Policy Optimization based algorithm for block GMFC that converges to the optimal
policy of cooperative MARL. Our empirical studies on several examples demonstrate that
our GMFC approach is comparable with the state-of-art MARL algorithms while enjoying
better scalability.

Keywords:
Cooperative Multi-Agent Reinforcement Learning, Graphon Theory, Graphon Mean-Field
Control, Proximal Policy Optimization
2000 MSC: 60J20, 91A13

1. Introduction1

Multi-agent reinforcement learning (MARL) has found various applications in the field2

of transportation and simulation [50, 1], stock price analysis and trading [32, 31], wireless3

communication networks [12, 11, 13], and learning behaviors in social dilemmas [33, 28, 34].4

MARL, however, becomes intractable due to the complex interactions among agents as the5

number of agents increases.6

A recent tractable approach is a mean-field approach by considering MARL in the regime7

with a large number of homogeneous agents under weak interactions [20]. According to the8
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number of agents and learning goals, there are three subtle types of mean-field theories for9

MARL. The first one is called mean-field MARL (MF-MARL), which refers to the empirical10

average of the states or actions of a finite population. For example, [52] proposes to approx-11

imate interactions within the population of agents by averaging the actions of the overall12

population or neighboring agents. [35] proposes a mean-field proximal policy optimization13

algorithm for a class of MARL with permutation invariance. The second one is called mean-14

field game (MFG), which describes the asymptotic limit of non-cooperative stochastic games15

as the number of agents goes to infinity [30, 27, 8]. Recently, a rapidly growing literature16

studies MFG for noncooperative MARL either in a model-based way [53, 6, 26] or by a17

model-free approach [25, 48, 18, 14, 44]. The third one is called mean-field control (MFC),18

which is closely related to MFG yet different from MFG in terms of learning goals. For19

cooperative MFC, the Bellman equation for the value function is defined on an enlarged20

space of probability measures, and MFC is always reformulated as a new Markov decision21

process (MDP) with continuous state-action space. [9] shows the existence of optimal poli-22

cies for MFC in the form of mean-field MDP and adapts classical reinforcement learning23

(RL) methods to the mean-field setups. [23] approximates MARL by a MFC approach, and24

proposes a model-free kernel-based Q-learning algorithm (MFC-K-Q) that enjoys a linear25

convergence rate and is independent of the number of agents. [44] presents a model-based26

RL algorithm M3-UCRL for MFC with a general regret bound. [2] proposes a unified two-27

timescale learning framework for MFG and MFC by tuning the ratio of learning rates of Q28

function and the population state distribution. Under the framework of MFC, [41] proposes29

locally executable policies such that the resulting discounted sum of average rewards well30

approximates the optimal value function over all policies with theoretical guarantee.31

One restriction of the mean-field theory is that it eliminates the difference among agents32

and interactions between agents are assumed to be uniform. However, in many real world33

scenarios, strategic interactions between agents are not always uniform and rely on the34

relative positions of agents. To develop scalable learning algorithms for multi-agent systems35

with heterogeneous agents, one approach is to exploit the local network structure of agents36

[45, 37]. Another approach is to consider mean-field systems on large graphs and their37

asymptotic limits, which leads to graphon mean-field theory [39]. So far, most existing38

works on graphon mean-field theory consider either diffusion processes without learning in39

continuous time or non-cooperative graphon mean-field game (GMFG) in discrete time. [3]40

considers uncontrolled graphon mean-field systems in continuous time. [17] studies MFG41

on an Erdös-Rényi graph. [19] studies the convergence of weighted empirical measures42

described by stochastic differential equations. [4] studies propagation of chaos of weakly43

interacting particles on general graph sequences. [5] considers general GMFG and studies44

ε-Nash equilibria of the multi-agent system by a PDE approach in continuous time. [29]45

studies stochastic games on large graphs and their graphon limits. It shows that GMFG46

is viewed as a special case of MFG by viewing the label of agents as a component of the47

state process. [21, 22] study continuous-time cooperative graphon mean-field systems with48

linear dynamics. On the other hand, [7] studies static finite-agent network games and their49

associated graphon games. [49] provides a sequential decomposition algorithm to find Nash50

equilibria of discrete-time GMFG. [15] constructs a discrete-time learning GMFG framework51
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to analyze approximate Nash equilibria for MARL with nonuniform interactions. However,52

little is focused on learning cooperative graphon mean-field systems in discrete time, except53

for [42, 43] on particular forms of nonuniform interactions among agents. [43] proves that54

when the reward is affine in the state distribution and action distribution, MARL with55

nonuniform interactions can still be approximated by classic MFC. [42] considers multi-56

class MARL, where agents belonging to the same class are homogeneous. In contrast, we57

consider a general discrete-time GMFC framework under which agents are allowed to be58

fully heterogeneous and interact non-uniformly on any network captured by a graphon.59

Our Work. In this work, we propose a general discrete-time GMFC framework to approx-60

imate cooperative heterogeneous MARL on large graphs by combining classical MFC and61

network games. Theoretically, we first show that GMFC can be reformulated as a new62

MDP with deterministic dynamics and infinite-dimensional state-action space, hence the63

Bellman equation for Q function is established on the space of probability measure ensem-64

bles. It shows that GMFC approximates cooperative MARL well in terms of both value65

function and optimal policies. The approximation error is at order O(1/
√
N), where N is66

the number of agents. Furthermore, instead of learning infinite-dimensional GMFC directly,67

we introduce a smaller class called block GMFC by discretizing the graphon index, which68

can be recast as a new MDP with deterministic dynamic and finite-dimensional continuous69

state-action space. We show that the optimal policy ensemble learned from block GMFC70

is near optimal for cooperative MARL. Using the approach in [38], we develop a proximal71

policy optimization (PPO) based algorithm for block GMFC, which, together with approxi-72

mation result between block GMFC and cooperative MARL, shows that the proposed PPO73

algorithm converges to the optimal policy of MARL with the sample complexity guarantee.74

Empirically, our experiments in Section 5 demonstrate that when the number of agents be-75

comes large, the mean episode reward of MARL becomes increasingly close to that of block76

GMFC, which verifies our theoretical findings. Furthermore, our block GMFC approach77

achieves comparable performances with other popular existing MARL algorithms in the78

finite-agent setting.79

Outline. The rest of the paper is organized as follows. Section 2 recalls basic notations80

of graphons and introduces the setup of cooperative MARL with nonuniform interactions81

and its asymptotic limit called GMFC. Section 3 connects cooperative MARL and GMFC,82

introduces block GMFC for efficient algorithm design, and builds its connection with coop-83

erative MARL. The main theoretical proofs are presented in Section 4. Section 5 tests the84

performance of block GMFC experimentally.85

2. Mean-Field MARL on Dense Graphs86

2.1. Preliminary: Graphon Theory87

In the following, we consider a cooperative multi-agent system and its associated mean-88

field limit. In this system, each agent is affected by all others, with different agents exerting89

different effects on her. This multi-agent system with N agents can be described by a90

weighted graph GN = (VN , EN ), where the vertex set VN = {1, . . . , N} and the edge set EN91
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represent agents and the interactions between agents, respectively. The adjacency matrix92

of GN is represented as {ξNi,j}1≤i,j≤N . To study the limit of the multi-agent system as N93

goes to infinity, we adopt the graphon theory introduced in [39] used to characterize the94

limit behavior of dense graph sequences. Therefore, throughout the paper, we assume the95

graph GN is dense and leave sparse graphs for future study.96

In general, a graphon is represented by a bounded symmetric measurable function W :97

I × I → I, with I = [0, 1]. We denote by W the space of all graphons and equip the space98

W with the cut norm ‖ · ‖�99

‖W‖� = sup
S,T⊂I

∣∣∣∣
∫

S×T
W (α, β)dαdβ

∣∣∣∣.

For each weighted graph GN = (VN , EN ), we consider the correspondence between the100

adjacency matrix {ξNi,j} and a function on I × I with constant value ξNi,j on each block101

( i−1
N , iN ] × ( j−1

N , jN ]. We make the following condition on the strength of interaction ξNi,j102

between agents i and j and the associated WN .103

Condition on WN and ξNi,j104

1) WN is a step graphon, that is, 0 ≤ WN ≤ 1 and WN is a constant on each block105

( i−1
N , iN ]× ( j−1

N , jN ]:106

WN (α, β) = WN

( i
N
,
j

N

)
, if α ∈ (

i− 1

N
,
i

N
], β ∈ (

j − 1

N
,
j

N
]. (2.1)

2) ξNi,j is taken as either

ξNi,j = WN (
i

N
,
j

N
) (C1)

or

ξNi,j ∼ Bernoulli
(
WN (

i

N
,
j

N
)
)
. (C2)

We further assume that the sequence of WN converges to a graphon W in cut norm as107

the number of agents N goes to infinity, which is crucial for the convergence analysis of108

cooperative MARL in Section 3.109

Assumption 2.1 The sequence (WN )N∈N converges in cut norm to some graphon W ∈ W110

such that111

‖WN −W‖� → 0.

Some common examples of graphons include112

1) Erdős Rényi: W (α, β) = p, 0 ≤ p ≤ 1, α, β ∈ I;113
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2) Stochastic block model:114

W (α, β) =

{
p if 0 6 α, β 6 0.5 or 0.5 6 α, β 6 1,
q otherwise,

where p represents the intra-community interaction and q the inter-community inter-115

action;116

3) Random geometric graphon: W (α, β) = f(min(|β−α|, 1−|β−α|)), where f : [0, 0.5]→117

[0, 1] is a non-increasing function.118

2.2. Cooperative Heterogeneous MARL119

In this section, we facilitate the analysis of MARL by considering a particular class of120

MARL with nonuniform interactions, where each agent interacts with all other agents via121

the aggregated weighted mean-field effect of the population of all agents.122

Recall that we use the weighted graph GN = (VN , EN ) to represent the multi-agent123

system, in which agents are cooperative and coordinated by a central controller. They124

share a finite state space S and take actions from a finite action space A. We denote by125

P(S) and P(A) the space of all probability measures on S and A, respectively. Furthermore,126

denote by B(S) the space of all Borel measures on S.127

For each agent i, the neighborhood empirical measure is given by128

µi,WN
t (·) :=

1

N

∑

j∈VN
ξNi,jδsjt

(·), (2.2)

where δ
sjt

denotes Dirac measure at sjt , and (See [15] for more details).129

At each step t = 0, 1, · · · , if agent i, i ∈ [N ] at state sit ∈ S takes an action ait ∈ A, then130

she will receive a reward131

ri
(
sit, µ

i,WN
t , ait

)
, i ∈ [N ], (2.3)

where ri : S ×B(S)×A → R, i ∈ [N ], and she will change to a new state sit+1 according to132

a transition probability such that133

sit+1 ∼ P i
(
·
∣∣∣ sit, µi,WN

t , ait

)
, i ∈ [N ], si0 ∼ µ ∈ P(S), (2.4)

where P i : S × B(S)×A → P(S), i ∈ [N ].134

(2.3)-(2.4) indicate that the reward and the transition probability of agent i at time135

t depend on both her individual information (sit, a
i
t) and neighborhood empirical measure136

µi,WN
t .137

Furthermore, the policy is assumed to be stationary for simplicity and takes the Marko-138

vian form139

ait ∼ πi
(
·|sit, µi,WN

t

)
∈ P(A), i ∈ [N ], (2.5)

which maps agent i’s state to a randomized action. (2.5) is called global policy since the140

policy of agent i depends on both her own state and the aggregate information of the whole141

population. For each agent i, the space of all global policies is denoted as Π.142
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Remark 2.2 It is computationally expensive to collect the aggregate information of the143

whole population in many practical scenarios. Considering the costly collection of the ag-144

gregation information of the whole population, one can restrict the policy to be in a local145

manner, that is, the policy that the agent i can execute depends solely on her own state146

information:147

ait ∼ πi
(
·|sit
)
∈ P(A), i ∈ [N ].

This has been studied in [41] for standard MFC. Precisely, [41] designs locally executable148

policies such that the resulting discounted sum of average rewards well approximates the149

optimal value function over all policies. We expect that a similar result holds for GMFC.150

Remark 2.3 When ξNij ≡ 1, ri ≡ r, P i ≡ P , i, j ∈ [N ], it corresponds to classical mean-151

field theory with uniform interactions [9, 23]. Furthermore, our framework is flexible enough152

to include the nonuniform interactions of actions via νi,WN
t = 1

N

∑
j∈VN ξ

N
i,jδajt

(·).153

The expected discounted accumulated reward of agent i is154

JN,i(µ, π
1, . . . , πN ) = E

[ ∞∑

t=0

γtri
(
sit, µ

i,WN
t , ait

)
∣∣∣∣∣ s

i
0 ∼ µ, ait ∼ πi(·|sit, µi,WN

t )

]
, (2.6)

subject to (2.2)-(2.5) with a discount factor γ ∈ (0, 1).155

The objective of this cooperative multi-agent system (2.2)-(2.5) is to find Pareto opti-156

mality given in the Definition 2.4 below.157

Definition 2.4 (Pareto Optimality) (π1,∗, . . . , πN,∗) ∈ ΠN is called Pareto optimality158

for the multi-agent system (2.2)-(2.5) if there does not exist (π1, . . . , πN ) ∈ ΠN such that159

∀ 1 ≤ i ≤ N, JN,i(µ, π1, . . . , πN ) ≥ JN,i(µ, π1,∗, . . . , πN,∗),

∃ 1 ≤ i ≤ N, JN,i(µ, π1, . . . , πN ) > JN,i(µ, π
1,∗, . . . , πN,∗).

To study Pareto optimality, we introduce the expected discounted accumulated reward160

averaged over all agents, i.e.,161

VN (µ) = sup
(π1,...,πN )∈ΠN

JN (µ, π1, . . . , πN ) (2.7)

:= sup
(π1,...,πN )∈ΠN

1

N

N∑

i=1

JN,i(µ, π
1, . . . , πN ),

subject to (2.2)-(2.5). Let (π1,∗, . . . , πN,∗) ∈ arg max
(π1,...,πN )∈ΠN

JN (µ, π1, . . . , πN ), then (π1,∗, . . . , πN,∗)162

is shown to be a Pareto optimality in Definition 2.4. Therefore, searching for Pareto opti-163

mality of cooperative MARL amounts to solving the optimal policy of (2.7). However, it is164

always difficult to exactly obtain the optimal policy of cooperative MARL. We consider a165

weak notion of ε-Pareto optimality.166
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Definition 2.5 (ε-Pareto Optimality) (π1,∗
ε , . . . , πN,∗ε ) ∈ ΠN is called ε-Pareto optimal-167

ity for the multi-agent system (2.2)-(2.5) if there does not exist (π1, . . . , πN ) ∈ ΠN such168

that169

∀ 1 ≤ i ≤ N, JN,i(µ, π1, . . . , πN ) ≥ JN,i(µ, π1,∗
ε , . . . , πN,∗ε ) + ε,

∃ 1 ≤ i ≤ N, JN,i(µ, π1, . . . , πN ) > JN,i(µ, π
1,∗
ε , . . . , πN,∗ε ) + ε.

For any ε > 0, let (π1,∗
ε , . . . , πN,∗ε ) ∈ ΠN such that170

JN (µ, π1,∗
ε , . . . , πN,∗ε ) ≥ sup

(π1,...,πN )∈ΠN
JN (µ, π1, . . . , πN )− ε, (2.8)

then (π1,∗
ε , . . . , πN,∗ε ) ∈ ΠN is an ε-Pareto Optimality in Definition 2.5.171

2.3. Graphon Mean-Field Control172

We expect the cooperative MARL (2.2)-(2.7) to become a GMFC problem as N →∞.173

In GMFC, there is a continuum of agents α ∈ I, and each agent with the index α ∈ I174

follows175

sα0 ∼ µα, aαt ∼ πα(·|sαt , µα,Wt ), sαt+1 ∼ Pα(·|sαt , µα,Wt , aαt ), (2.9)

where µαt = L(sαt ), α ∈ I denotes the probability distribution of sαt , and µ
α,W
t is defined as176

the neighborhood mean-field measure of agent α:177

µα,Wt =

∫

I
W (α, β)µβt dβ ∈ B(S), (2.10)

with the graphon W given in Assumption 2.1.178

To ease the sequel analysis, define the space of state distribution ensembles MMM :=179

P(S)I := {f : I → P(S)} and the space of policy ensembles ΠΠΠ := P(A)S×I . Then180

µµµ := (µα)α∈I and πππ := (πα)α∈I are elements inMMM and ΠΠΠ, respectively.181

The objective of GMFC is to maximize the expected discounted accumulated reward182

averaged over all agents α ∈ I183

V (µµµ) : = sup
πππ∈ΠΠΠ

J(µµµ,πππ) (2.11)

= sup
πππ∈ΠΠΠ

∫

I
E

[ ∞∑

t=0

γtrα
(
sαt , µ

α,W
t , aαt

)
∣∣∣∣∣ s

α
0 ∼ µα, aαt ∼ πα(·|sαt , µα,Wt )

]
dα.

3. Main Results184

3.1. Reformulation of GMFC185

In this section, we show that GMFC (2.9)-(2.11) can be reformulated as a MDP with186

deterministic dynamics and continuous state-action spaceMMM × ΠΠΠ.187
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Theorem 3.1 GMFC (2.9)-(2.11) can be reformulated as188

V (µµµ) = sup
πππ∈ΠΠΠ

∞∑

t=0

γtR(µµµt,πππ(µµµt)), (3.1)

subject to189

µαt+1(·) = ΦΦΦα(µµµt,πππ(µµµt))(·), t ∈ N, µα0 = µα, α ∈ I, (3.2)

where the aggregated reward R : MMM×ΠΠΠ → R and the aggregated transition dynamics ΦΦΦ :190

MMM×ΠΠΠ→MMM are given by191

R(µµµ,πππ(µµµ)) =

∫

I

∑

s∈S

∑

a∈A
rα(s, a, µα,W )πα(a|s, µα,W )µα(s)dα, (3.3)

ΦΦΦα(µµµ,πππ(µµµ))(·) =
∑

s∈S

∑

a∈A
Pα(·|s, µα,W , a)πα(a|s, µα,W )µα(s). (3.4)

The proof of Theorem 3.1 is similar to the proof of Lemma 2.2 in [24]. So we omit it here.192

(3.4) and (3.2) indicate the evolution of the state distribution ensemble µµµt over time.193

That is, under the fixed policy ensemble πππ, the state distribution µαt+1 of agent α at time t+1194

is fully determined by the policy ensemble πππ and the state distribution ensemble µµµt at time195

t. Note that the change of population state distribution ensemble will affect neighborhood196

mean-field measure. In turn, the change of neighborhood mean-field measure will have an197

influence on population state distribution ensemble.198

With the reformulation in Theorem 3.1, the associated Q function starting from (µµµ,πππ) ∈199

MMM×ΠΠΠ is defined as200

Q(µµµ,πππ) = R(µµµ,πππ(µµµ)) + sup
πππ′∈ΠΠΠ

[ ∞∑

t=1

γtR
(
µµµt,πππ

′(µµµt)
) ∣∣∣ sα0 ∼ µα, aα0 ∼ πα(·|sα0 , µα,W )

]
.(3.5)

Hence its Bellman equation is given by201

Q(µµµ,πππ) = R(µµµ,πππ(µµµ)) + γ sup
πππ′∈ΠΠΠ

Q(ΦΦΦ(µµµ,πππ(µµµ)),πππ′). (3.6)

Remark 3.2 (Label-state formulation) GMFC (2.9)-(2.11) can be viewed as a classical MFC202

with extended state space S×I, action space A, policy π̃ ∈ P(A)S×I , mean-field information203

µ̃ ∈ P(S×I), reward r̃((s, α), µ̃, a) := r((s, α),
∫
IW (α, β)µ̃(·, β)dβ, a), transition dynamics204

of (s̃t, αt) such that205

s̃t+1 ∼ P (·|(s̃t, αt), ãt,
∫

I
W (αt, β)µ̃t(·, β)dβ), αt+1 = αt, ãt ∼ π̃(·|s̃t, αt,

∫

I
W (αt, β)µ̃t(·, β)dβ),

with the initial condition s̃0 ∼ µ0, α̃0 ∼ Unif(0, 1). It is worth pointing out such a label-206

state formulation has also been studied in GMFG [29, 15].207

8

                  



3.2. Approximation208

In this section, we show that GMFC (2.9)-(2.11) provides a good approximation for the209

cooperative multi-agent system (2.2)-(2.7) in terms of the value function and the optimal210

policy ensemble. To do this, the following assumptions on W , P , r, and πππ are needed.211

Assumption 3.3 (graphon W ) There exists LW > 0 such that for all α, α′, β, β′ ∈ I212

|W (α, β)−W (α′, β′)| ≤ LW ·
(
|α− α′|+ |β − β′|

)
.

Assumption 3.3 is common in graphon mean-field theory [21, 15, 29]. Indeed, the Lips-213

chitz continuity assumption on W in Assumption 3.3 can be relaxed to piecewise Lipschitz214

continuity on W .215

Assumption 3.4 (transition probability P ) There exists LP > 0 and L̃P > 0 such that216

for any α, β ∈ I, all s ∈ S, a ∈ A, µ1, µ2 ∈ B(S)217

‖Pα(·|s, µ1, a)− P β(·|s, µ2, a)‖1 ≤ LP · ‖µ1 − µ2‖1 + L̃P · |α− β|,

where ‖ · ‖1 denotes L1 norm here and throughout the paper.218

Assumption 3.5 (reward r) There exist Mr > 0, Lr > 0 and L̃r > 0 such that for all219

s ∈ S, a ∈ A, µ1, µ2 ∈ B(S),220

|rα(s, µ, a)| ≤Mr, |rα(s, µ1, a)− rβ(s, µ2, a)| ≤ Lr · ||µ1 − µ2||1 + L̃r · |α− β|.

Assumption 3.6 (policy πππ) There exists LΠΠΠ > 0 and L̃ΠΠΠ > 0 such that for any policy221

ensemble πππ := (πα)α∈I ∈ ΠΠΠ is Lipschitz continuous, that is, for any α, β ∈ I and µ1, µ2 ∈222

B(S),223

max
s∈S
‖πα(·|s, µ1)− πβ(·|s, µ2)‖1 ≤ LΠΠΠ · ||µ1 − µ2||1 + L̃ΠΠΠ| · α− β|.

Assumptions 3.3-3.6 state that W,P, r and πππ are Lipschitz continuous with respect to224

both the index of the agent and the neighborhood mean-field measure. The distance between225

indexes |α − β| measures the similarity of agents. If P, r and πππ are identical, Assumptions226

3.4-3.6 are commonly used to bridge the multi-agent system and classical mean-field theory227

[23, 41, 42, 43].228

To show approximation properties of GMFC in the large-scale multi-agent system, we229

need to relate policy ensembles of GMFC to policies of the multi-agent system. On one230

hand, one can see that any πππ ∈ ΠΠΠ leads to a N -agent policy tuple (π1, . . . , πN ) ∈ ΠN with231

ΓN : ΠΠΠ 3 πππ 7→ (π1, . . . , πN ) ∈ ΠN , with πi := πππ
i
N . (3.7)

On the other hand, any N -agent policy tuple (π1, . . . , πN ) ∈ ΠN can be seen as a step232

policy ensemble πππN in ΠΠΠ:233

πππN,α :=
N∑

i=1

πi1α∈( i−1
N
, i
N

] ∈ ΠΠΠ. (3.8)
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Similarly, any N -agent reward tuple (r1, . . . , rN ) can be regarded as a step reward function234

of GMFC:235

rN,α :=
N∑

i=1

ri1α∈( i−1
N
, i
N

]. (3.9)

236

Theorem 3.7 (Approximate Pareto Property) Assume Assumptions 2.1, 3.3, 3.4, 3.5237

and 3.6. Then under either the condition (C1) or (C2), we have for any initial distribution238

µ ∈ P(S)239

|VN (µ)− V (µ)| → 0, as N →∞. (3.10)

Moreover, if the graphon convergence in Assumption 2.1 is at rate O( 1√
N

), then |VN (µ) −240

V (µ)| = O( 1√
N

). As a consequence, for any ε > 0, there exists an integer Nε such that241

when N ≥ Nε, the optimal policy ensemble of GMFC denoted as πππ∗ (if it exists) provides242

an ε-Pareto optimality (π1,∗, . . . , πN,∗) := ΓN (πππ∗) for the multi-agent system (2.7), with ΓN243

defined in (3.7).244

Theorem 3.7 implies that if we could compute an algorithm to learn the optimal policy245

ensemble of GMFC, then the learned optimal policy ensemble is close to the optimal policy of246

MARL. Directly learning the optimal policy of GMFC, however, will lead to high complexity247

due to the infinite-dimensional feature of µµµ and πππ. Instead, we will introduce a smaller class248

of GMFC with a lower dimension in the next section, which enables a scalable algorithm.249

3.3. Algorithm Design and Convergence Analysis250

This section will show that discretizing the graphon index α ∈ I of GMFC enables to251

approximate Q function in (3.6) by an approximated Q function in (3.11) below defined on252

a smaller space, which is critical for designing efficient learning algorithms.253

Precisely, we choose uniform grids αm ∈ IM := {mM , 0 ≤ m ≤ M} for simplicity, and254

approximate each agent α ∈ I by the nearest αm ∈ IM close to it. Introduce M̃MMM :=255

P(S)IM , Π̃ΠΠM := P(A)S×IM . Meanwhile, µ̃µµ := (µ̃αm)m∈[M ] ∈ M̃MMM and π̃ππ := (π̃αm)m∈[M ] ∈256

Π̃ΠΠM can be viewed as a piecewise constant state distribution ensemble inMMM and a piecewise257

constant policy ensemble in ΠΠΠ, respectively. Our arguments can be easily generalized to258

nonuniform grids.259

Consequently, instead of performing algorithms according to (3.6) with a continuum of260

graphon labels directly, we work with GMFC withM blocks called block GMFC, in which261

agents in the same block are homogeneous. The Bellman equation for Q function of block262

GMFC is given by263

Q̃(µ̃µµ, π̃ππ) = R̃(µ̃µµ, π̃ππ(µ̃µµ)) + γ sup
π̃ππ′∈Π̃ΠΠM

Q̃(Φ̃ΦΦ(µ̃µµ, π̃ππ(µ̃µµ)), π̃ππ′), (3.11)
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where the neighborhood mean-field measure, the aggregated reward R̃ : M̃MMM × Π̃ΠΠM → R264

and the aggregated transition dynamics Φ̃ΦΦ : M̃MMM × Π̃ΠΠM →M̃MMM are given by265

µ̃αm,W =
1

M

M−1∑

m′=0

W (αm, αm′)µ̃
αm′ ,m ∈ [M ], (3.12)

R̃(µ̃µµ, π̃ππ(µ̃µµ)) =
1

M

M−1∑

m=0

∑

s∈S

∑

a∈A
rαm(s, a, µ̃αm,W )µ̃αm(s)π̃αm(a|s, µ̃αm,W ), (3.13)

Φ̃ΦΦ
αm

(µ̃µµ, π̃ππ(µ̃µµ))(·) =
∑

s∈S

∑

a∈A
Pαm(·|s, a, µ̃αm,W )µ̃αm(s)π̃αm(a|s, µ̃αm,W ). (3.14)

We see from (3.11) that block GMFC is a MDP with deterministic dynamics Φ̃ΦΦ and266

continuous state-action space M̃MMM × Π̃ΠΠM . The following Theorem shows that there exists267

an optimal policy ensemble of block GMFC in Π̃ΠΠM .268

Theorem 3.8 (Existence of Optimal Policy Ensemble) Given Assumptions 3.4, 3.5,269

assume γ · (1 + LP + LΠ) <∞, then for any fixed integer M > 0, there exists an π̃ππ∗ ∈ Π̃ΠΠM270

that maximize Q̃(µ̃µµ, π̃ππ) in (3.11) for any µ̃µµ ∈ M̃MMM .271

Furthermore, we show that with sufficiently fine partitions of the graphon index I, i.e.,272

M is sufficiently large, block GMFC (3.11)-(3.14) well approximates the multi-agent system273

in Section 2.2.274

Theorem 3.9 Assume γ · (1 + LP + LΠ) < ∞ and Assumptions 2.1, 3.3, 3.4, 3.5 and275

3.6. Under either (C1) or (C2), for any ε > 0, there exists Nε, Mε such that for N ≥ Nε,276

the optimal policy ensemble π̃ππ∗ of block GMFC (3.11) with Mε blocks provides an ε-Pareto277

optimality (π̃1,∗, . . . , π̃N,∗) := ΓN (π̃ππ∗) for the multi-agent system (2.7) with N agents.278

Theorem 3.9 shows that the optimal policy ensemble of block GMFC is near-optimal279

for all sufficiently large multi-agent systems, meaning that block GMFC provides a good280

approximation for the multi-agent system. Therefore, If we could develop an algorithm for281

block GMFC to extract an optimal policy ensemble of block GMFC, then the extracted282

policy is near optimal for MARL.283

When model parameters Pα, rα and W are known, one can easily extract the optimal284

policy based on Bellman equation. If any of these model parameters Pα, rα and W is285

unknown, we take a model-free approach. The key issue is to handle population state286

distribution ensemble µ̃µµ, which is an input of Q̃ function in (3.11). We assume that we287

have a block GMFC simulator G(µ̃µµ, π̃ππ) = (µ̃µµ′, R̃). That is, for any pair of population state288

distribution ensemble and policy ensemble (µ̃µµ, π̃ππ), we can sample the aggregated reward R̃289

and the next population state distribution ensemble µ̃µµ′. To learn the optimal policy of block290

GMFC, one can adopt any existing techniques for standard MFC, such as a kernel-based Q291

learning method in [23] and a uniform discretization method in [9].292

Remark 3.10 If we can only observe the state of agent αm ∈ IM and do not have access to293

population state distribution ensemble, we can estimate µ̃αm following [2] or [42]. However,294
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different from [2] and [42], we also need to estimate µ̃αm,W due to the graphon structure W295

and leave it for future study.296

We choose to adapt DRL algorithm neural Proximal Policy Optimization (PPO) [47, 38]297

to block GMFC given in Algorithm 1. Following Corollary 4.11 in [38], together with298

Theorem 3.9, we can state the global convergence of neural PPO for block GMFC. Since299

assumptions that make the result hold are similar as [38], we do not state these assumptions300

here.301

Algorithm 1 Neural PPO for block GMFC
Input Width of neural network M , radius of constraint R, number of SGD and TD
iterations T , number of PPO iteration K, penalty parameter β
Initialize
for k = 0 to K − 1 do

set temperature parameter τk+1 ← β
√
K

k+1 and penalty parameter βk ← β
√
K.

Sample (µ̃µµt, π̃ππt, R̃t, µ̃µµ
′
t, π̃ππ
′
t)
T
t=1 with π̃ππ0 ∼ Π0(·|µ̃µµ), µ̃µµ′t = Φ̃ΦΦ(µ̃µµt, π̃ππt), π̃ππt ∼ Πθk(·|µ̃µµt).

Solve for Q function parameterized by neural network Qωk = NN(ωk,M) using the
TD update.

Solve for energy function parameterized by neural network fθk+1
= NN(θk+1,M)

using the SGD update.
Update policy: Πθk ∝ exp(τ−1

k+1fθk+1
).

end for

Theorem 3.11 Suppose that Assumptions 2.1, 3.3, 3.4, 3.5 and 3.6 hold. Further assume
γ · (1 +LΠ +LP ) < 1. Furthermore, suppose that the width of neural network is sufficiently
large. For any ε > 0, there exists Mε and Nε such that for any M ≥Mε and N ≥ Nε, and
the policy attained by Algorithm 1 denoted as πππPPO

|JN (µ;π1,∗, . . . , πN,∗)− J̃M (µ;πππPPO)| ≤ C√
K

+ C̄ε, (3.15)

where JN and J̃M are given in (2.7) and (4.7) respectively, K is the number of iteration, C302

and C̄ are constants.303

By setting K = C
ε2
, the optimal empirical value function of MARL is approximated by the304

value function of block GMFC under the learned policy in Algorithm 1 with the error O(ε).305

In other words, Theorem 3.11 states that, with a sample complexity of O( 1
ε2

), Algorithm 1306

generates a O(ε)-Pareto optimality of cooperative MARL.307

To evaluate the performance of Algorithm 1 and to validate our theoretical findings, we308

describe the deployment of block GMFC in the multi-agent system in Algorithm 2, which309

we call it N-agent GMFC.310
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Algorithm 2 N-agent GMFC
Input Initial state distribution µ0, number of agents N , episode length T , the learned
policy π̃ππ ∈ Π̃ΠΠM learned by PPO
Initialize si0 ∼ µ0, i ∈ [N ]
for t = 1 to T do

for i = 1 to N do
Choose m(i) = arg min

m∈[M ]
| iN − m

M |

Sample action ait ∼ π̃αm(i)(·|sit), observe reward rit and new state sit+1

end for
end for

4. Proofs of Main Results311

In this section, we will provide proofs of Theorems 3.7-3.9.312

4.1. Proof of Theorem 3.7313

To prove Theorem 3.7, we need the following two Lemmas. We start by defining the314

step state distribution µµµNt := (µN,αt )α∈I for notational simplicity315

µN,αt (·) =
∑

i∈VN
δsit(·)1α∈( i−1

N
, i
N

]. (4.1)

Lemma 4.1 shows the convergence of the neighborhood empirical measure to the neigh-316

borhood mean-field measure.317

Lemma 4.1 Assume Assumptions 2.1, 3.3, 3.4 and 3.6. Under either condition (C1) or318

(C2), for any policy ensemble πππ ∈ ΠΠΠ, we have319

N∑

i=1

∫

( i−1
N
, i
N

]
E
[
‖µi,WN

t − µα,Wt ‖1
]
dα→ 0, as N →∞, (4.2)

where µit = µαt ≡ µ ∈ P(S).320

Moreover, if the graphon convergence in Assumption 2.1 is at rate O( 1√
N

), then

N∑

i=1

∫

( i−1
N
, i
N

]
E
[
‖µi,WN

t − µα,Wt ‖1
]
dα = O(

1√
N

).

Proof of Lemma 4.1 We first prove (4.2) under the condition (C1) and then show (4.2)321

also holds under the condition (C2).322
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Case 1: ξNi,j = WN ( i
N ,

j
N ). Note that under the condition (C1), µi,WN

t =
∫
IWN ( i

N , β)µN,βt dβ323

by the definition of µN,αt in (4.1). Then324

N∑

i=1

∫

( i−1
N
, i
N

]
E
[
‖µi,WN

t − µα,Wt ‖1
]
dα

=

N∑

i=1

∫

( i−1
N
, i
N

]
E
[∥∥∥
∫

I
WN (

i

N
, β)µN,βt dβ −

∫

I
W (α, β)µβt dβ

∥∥∥
1

]
dα

≤
N∑

i=1

∫

( i−1
N
, i
N

]
E
[∥∥∥
∫

I
WN (

i

N
, β)µN,βt dβ −

∫

I
WN (

i

N
, β)µβt dβ

∥∥∥
1

]
dα

+
N∑

i=1

∫

( i−1
N
, i
N

]
E
[∥∥∥
∫

I
WN (

i

N
, β)µβt dβ −

∫

I
W (α, β)µβt dβ

∥∥∥
1

]
dα

= : I1 + I2.

For the term I1, we adapt Theorem 2 that works with local policy in [15] to our setting of325

global policy and have that under the policy ensemble πππ and N -agent policy (π1, . . . , πN ) :=326

ΓN (πππ), with ΓN defined in (3.7)327

I1 = E
[∥∥∥
∫

I
WN (

i

N
, β)µN,βt dβ −

∫

I
WN (

i

N
, β)µβt dβ

∥∥∥
1

]
→ 0, as N →∞.

Moreover, if the graphon convergence in Assumption 2.1 is at rate O( 1√
N

), then the term328

I1 is also at rate O( 1√
N

).329

By noting that WN (α, β) = WN

( dNαe
N , dNβeN

)
,330

I2 =
N∑

i=1

∫

( i−1
N
, i
N

]

∥∥∥
∫

I
WN

(dNαe
N

, β
)
µβt dβ −

∫

I
W (α, β)µβt dβ

∥∥∥
1
dα

=
N∑

i=1

∫

( i−1
N
, i
N

]

∥∥∥
∫

I
WN

(
α, β

)
µβt dβ −

∫

I
W (α, β)µβt dβ

∥∥∥
1
dα

=

∫

I

∥∥∥
∫

I
WN

(
α, β

)
µβt dβ −

∫

I
W (α, β)µβt dβ

∥∥∥
1
dα

=
∑

s∈S

∫

I

∣∣∣
∫

I
WN

(
α, β

)
µβt (s)dβ −

∫

I
W (α, β)µβt (s)dβ

∣∣∣dα

→ 0,

where the last inequality is from the fact in [39] that the convergence of ‖WN −W‖� → 0
is equivalent to the convergence of

‖WN −W‖L∞→L1 := sup
‖g‖∞≤1

∫

I

∣∣∣∣
∫

I

(
WN (α, β)−W (α, β)

)
g(β)dβ

∣∣∣∣dα→ 0.
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Combining I1 and I2, we prove (4.2) under the condition (C1).331

Case 2: ξNi,j are random variables with Bernoulli(WN ( i
N ,

j
N )).332

N∑

i=1

∫

( i−1
N
, i
N

]
E‖µi,WN

t − µα,Wt ‖1dα

=
N∑

i=1

∫

( i−1
N
, i
N

]
E
∥∥ 1

N

N∑

j=1

ξNij δsjt
−
∫

I
W (α, β)µβt dβ

∥∥
1
dα

≤
N∑

i=1

∫

( i−1
N
, i
N

]
E
∥∥ 1

N

N∑

j=1

ξNij δsjt
−
∫

I
WN (

i

N
, β)µN,βt dβ

∥∥
1
dα

+
N∑

i=1

∫

( i−1
N
, i
N

]
E
∥∥
∫

I
WN (

i

N
, β)µN,βt dβ −

∫

I
W (α, β)µβt dβ

∥∥
1
dα

=: I1 + I2.

Note from Case 1 that I2 → 0 as N →∞ and I2 = O( 1√
N

) if the graphon convergence in333

Assumption 2.1 is at rate O( 1√
N

). Therefore, it is enough to estimate I1.334

I1 = E
∥∥ 1

N

N∑

j=1

ξNij δsjt
−
∫

I
WN (

i

N
, β)µN,βt dβ

∥∥
1

≤ E
[
E
[

sup
f :S→{−1,1}

{ 1

N

N∑

j=1

ξNij f(sjt )−
1

N

N∑

j=1

WN (
i

N
,
j

N
)f(sjt )

}∣∣∣s1
t , . . . , s

N
t

]]
.

We proceed the same argument as in the proof of Theorem 6.3 in [23]. Precisely, conditioned335

on s1
t , . . . , s

N
t ,
{
ξNij f(sjt ) − WN ( i

N ,
j
N )f(sjt )

}N
j=1

is a sequence of independent mean-zero336

random variables bounded in [−1, 1] due to E[ξNi,j ] = WN ( i
N ,

j
N ). This implies that each337

ξNij f(sjt ) − WN ( i
N ,

j
N )f(sjt ) is a sub-Gaussian with variance bounded by 4. As a result,338

conditioned on s1
t , . . . , s

N
t ,
{

1
N

∑N
j=1 ξ

N
ij f(sjt )− 1

N

∑N
j=1WN ( i

N ,
j
N )f(sjt )

}N
i=1

is a mean-zero339

sub-Gaussian random variable with variance 4
N . By the equation (2.66) in [51], we have340

I1 ≤ E
[
E
[

sup
f :S→{−1,1}

{ 1

N

N∑

j=1

ξNij f(sjt )−
1

N

N∑

j=1

WN (
i

N
,
j

N
)f(sjt )

}∣∣∣s1
t , . . . , s

N
t

]]

≤
√

8 ln(2)|S|√
N

.

Therefore, combining I1 and I2 in Case 2, we show that when ξNi,j are random variables341

with Bernoulli(WN ( i
N ,

j
N )), (4.2) holds under the condition (C2). 2342

Lemma 4.2 shows the convergence of the state distribution of N -agent game to the state343

distribution of GMFC.344
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Lemma 4.2 Assume Assumptions 2.1, 3.3, 3.4 and 3.6. For any uniformly bounded family345

G of functions gα : S → R, we have346

sup
{gα}α∈I∈G

N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E[gα(sit)− gα(sαt )]
∣∣∣dα→ 0, (4.3)

where si0 ∼ µ0, sα0 ∼ µ0. Moreover, if the graphon convergence in Assumption 2.1 is at rate
O( 1√

N
), then

sup
{gα}α∈I∈G

N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E[gα(sit)− gα(sαt )]
∣∣∣dα = O(

1√
N

).

Proof of Lemma 4.2 The proof is by induction as follows. To do this, first introduce347

lβgα(s, µ, π) :=
∑

a∈A

∑

s′∈S
gα(s′)P β(s′|s, µ, a)π(a|s, µ).

(4.3) holds obviously at t = 0. Suppose that (4.3) holds at t. Then for any uniformly348

bounded function gα with |gα| ≤Mg at t+ 1349

N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E[gα(sit+1)− gα(sαt+1)]
∣∣∣dα

=
N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E
[
l
i
N
gα(sit, µ

i,WN
t , πi)

]
− E

[
lαgα(sαt , µ

α,W
t , πα)

]∣∣∣dα

≤
N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E
[
l
i
N
gα(sit, µ

i,WN
t , πi)

]
− E

[
lαgα(sit, µ

α,W
t , πi)

]∣∣∣dα

+

N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E
[
lαgα(sit, µ

α,W
t , πi)

]
− E

[
lαgα(sαt , µ

α,W
t , πi)

]∣∣∣dα

+
N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E
[
lαgα(sαt , µ

α,W
t , πi)

]
− E

[
lαgα(sαt , µ

α,W
t , πα)

]∣∣∣dα

= : I + II + III, (4.4)

where the first equality is by the law of total expectation.350

First term of (4.4).

I =
N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E
[
l
i
N
gα(sit, µ

i,WN
t , πi)

]
− E

[
lαgα(sit, µ

α,W
t , πi)

]∣∣∣dα

≤ Mg

(
LP

N∑

i=1

∫

( i−1
N
, i
N

]
E
[
‖µi,WN

t − µα,Wt ‖1
]
dα+ L̃P

N∑

i=1

∫

( i−1
N
, i
N

]
|α− i

N
|dα
)

→ 0, as N →∞
where the second inequality is from the continuity of P , and the last inequality is from351

Lemma 4.1.352

16

                  



Second term of (4.4). One can view lαgα(s, µα,Wt , πi) as a function of s ∈ S for any fixed353

µα,Wt and πi, α ∈ I. Note that |lαgα(s, µα,Wt , πi)| ≤Mg, where Mg is a constant independent354

of µα,Wt , πi. Since (4.3) holds at t, then355

II =

N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E
[
lαgα(sit, µ

α,W
t , πi)

]
− E

[
lαgα(sαt , µ

α,W
t , πi)

]∣∣∣dα

→ 0, as N →∞.

Third term of (4.4).

III =
N∑

i=1

∫

( i−1
N
, i
N

]

∣∣∣E
[
lαgα(sαt , µ

α,W
t , πi)

]
− E

[
lαgα(sαt , µ

α,W
t , πα)

]∣∣∣dα

≤ Mg

N∑

i=1

∫

( i−1
N
, i
N

]
E
[
‖πi(sαt )− πα(sαt )‖1

]
dα

≤ MgLΠ

N∑

i=1

∫

( i−1
N
, i
N

]
max

α∈( i−1
N
, i
N

]
| i
N
− α|dα

= O(
1

N
),

where the second inequality is by the uniform boundedness of g and the third inequality is356

from Assumption 3.6. 2357

Now we are ready to prove Theorem 3.7. We start by defining r̂α the aggregated reward358

over all possible actions under the policy π359

r̂α(s, µ, π) :=
∑

a∈A
rα(s, µ, a)π(a|s, µ).
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Proof of Theorem 3.7

|VN (µ)− V (µ)|

=

∣∣∣∣sup
ΠN

1

N

N∑

i=1

E

[ ∞∑

t=0

γtri
(
sit, µ

i,WN
t , ait

)
]
− sup
πππ∈ΠΠΠ

∫

I
E

[ ∞∑

t=0

γtrα
(
sαt , µ

α,W
t , aαt

)
]
dα

∣∣∣∣

≤ sup
πππ∈ΠΠΠ

∣∣∣∣
1

N

N∑

i=1

E

[ ∞∑

t=0

γtri
(
sit, µ

i,WN
t , ait

)
]
−
∫

I
E

[ ∞∑

t=0

γtrα
(
sαt , µ

α,W
t , aαt

)
]
dα

∣∣∣∣

= sup
πππ∈ΠΠΠ

∣∣∣∣
∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]

(
E
[
r̂i(sit, µ

i,WN
t , πi)

]
− E

[
r̂α(sαt , µ

α,W
t , πα)

])
dα

∣∣∣∣

≤ sup
πππ∈ΠΠΠ

∣∣∣∣
∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]

(
E
[
r̂i(sit, µ

i,WN
t , πi)

]
− E

[
r̂α(sit, µ

α,W
t , πi)

])
dα

∣∣∣∣

+ sup
πππ∈ΠΠΠ

∣∣∣∣
∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]

(
E
[
r̂α(sit, µ

α,W
t , πi)

]
− E

[
r̂α(sαt , µ

α,W
t , πi)

])
dα

∣∣∣∣

+ sup
πππ∈ΠΠΠ

∣∣∣∣
∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]

(
E
[
r̂α(sαt , µ

α,W
t , πi)

]
− E

[
r̂α(sαt , µ

α,W
t , πα)

])
dα

∣∣∣∣

:= I + II + III, (4.5)

where we use (3.8) in the second inequality.360

First term of (4.5).

I = sup
πππ∈ΠΠΠ

∣∣∣∣
∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]

(
E
[
r̂i(sit, µ

i,WN
t , πi)

]
− E

[
r̂α(sit, µ

α,W
t , πi)

])
dα

∣∣∣∣

= sup
πππ∈ΠΠΠ

∣∣∣∣
∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]

(
E
[
r̂i(sit, µ

i,WN
t , πi)

]
− E

[
r̂i(sit, µ

α,W
t , πi)

])
dα

∣∣∣∣

+ sup
πππ∈ΠΠΠ

∣∣∣∣
∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]

(
E
[
r̂i(sit, µ

α,W
t , πi)

]
− E

[
r̂α(sit, µ

α,W
t , πi)

])
dα

∣∣∣∣

≤ sup
πππ
Lr

∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]
E‖µi,WN

t − µα,Wt ‖1dα+ sup
πππ
L̃r

∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]
| i
N
− α|dα

= O(
1√
N

), (4.6)

where the last equality is from Lemma 4.1 when the convergence in Assumption 2.1 is at361

rate O(1/
√
N).362

Second term of (4.5). From Lemma 4.2, we have II = O( 1√
N

).363
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Third term of (4.5).

III ≤ sup
πππ
Lr

∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]
max
s∈S
‖πi(s)− πα(s)‖1dα

≤ LrL̃Π sup
πππ

∞∑

t=0

γt
N∑

i=1

∫

( i−1
N
, i
N

]
| i
N
− α|dα

= O(
1

N
).

Therefore, combining I, II and III yields the desired result. 2364

4.2. Proof of Theorem 3.8365

First, we see that (3.11) corresponds to the following optimal control problem366

ṼM (µ̃µµ) := sup
π̃ππ∈Π̃ΠΠM

J̃M (µ̃µµ, π̃ππ)

= sup
π̃ππ∈Π̃ΠΠM

1

M

M∑

m=1

E

[ ∞∑

t=0

γtr
(
s̃αmt , µ̃αm,Wt , ãαmt

)
∣∣∣∣∣ s̃
αm
0 ∼ µ̃αm , ãαmt ∼ π̃αm(·|s̃αmt )

]
.(4.7)

The associated Q function of (4.7) is defined as367

Q̃(µ̃µµ, π̃ππ) = sup
π̃ππ′

1

M

M∑

m=1

E

[ ∞∑

t=0

γtr
(
s̃αmt , µ̃αm,Wt , ãαmt

)
∣∣∣∣∣ s̃

αm
0 ∼ µ̃αm , ãαm0 ∼ π̃αm(·|s̃αmt )

]

= R(µ̃µµ, π̃ππ) + sup
π̃ππ′∈Π̃ΠΠM

∞∑

t=1

γtR̃(µ̃µµt, π̃ππ
′), (4.8)

subject to µ̃µµt+1 = Φ̃ΦΦ(µ̃µµt, π̃ππ), µ̃µµ0 = µ̃µµ.368

We first show the verification result and then prove the continuity property of Q̃ in (4.8),369

which thus leads to Theorem 3.8.370

Lemma 4.3 (Verification) Assume Assumption 3.5. Then Q̃ in (4.8) is the unique func-371

tion satisfying the Bellman equation (3.11). Furthermore, if there exists π̃ππ∗ ∈ arg max
Π̃ΠΠM

Q̃(µ̃µµ, π̃ππ)372

for each µ̃µµ ∈ M̃MMM , then π̃ππ∗ ∈ Π̃ΠΠM is an optimal stationary policy ensemble.373

The proof of Lemma 4.3 is standard and very similar to the proof of Proposition 3.3 in374

[23].375

Proof of Lemma 4.3 First, define Mr
1−γ -bounded function space Q := {f : M̃MMM × Π̃ΠΠM →376

[− Mr
1−γ ,

Mr
1−γ ]}. Then we define a Bellman operator B : Q → Q377

(Bq)(µ̃µµ, π̃ππ) := R̃(µ̃µµ, π̃ππ) + γ sup
π̃ππ′∈Π̃ΠΠM

q(Φ̃ΦΦ(µ̃µµ, π̃ππ), π̃ππ′),
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One can show that B is a contraction operator with the module-γ. By Banach fixed point378

theorem, B admits a unique fixed point. As Q̃ function of (4.8) satisfies BQ̃ = Q̃, Q̃ is379

unique solution of (3.11).380

We next define Bπ̃ππ
′

: Q → Q under the policy ensemble π̃ππ′ ∈ Π̃ΠΠM with381

(Bπ̃ππ
′
q)(µ̃µµ, π̃ππ) := R̃(µ̃µµ, π̃ππ) + γq(Φ̃ΦΦ(µ̃µµ, π̃ππ), π̃ππ′).

Similarly, we can show that Bπ̃ππ
′
is a contraction map with the module-γ and thus admits a382

unique fixed point, which is denoted as Q̃π̃ππ
′
. From this, we have383

Q̃π̃ππ
∗
(µ̃µµ, π̃ππ) = R̃(µ̃µµ, π̃ππ) + γQ̃π̃ππ

∗
(Φ̃ΦΦ(µ̃µµ, π̃ππ), π̃ππ∗)

= R̃(µ̃µµ, π̃ππ) + γ sup
π̃ππ′∈Π̃ΠΠM

Q̃(Φ̃ΦΦ(µ̃µµ, π̃ππ), π̃ππ′) = Q̃(µ̃µµ, π̃ππ),

which implies π̃ππ∗ is an optimal policy ensemble. 2384

Lemma 4.4 Let Assumptions 3.4, 3.5 hold. Assume further γ · (1 + LP + LΠ) < 1. Then385

Q̃ in (4.8) is continuous.386

Proof of Lemma 4.4 We will show that as µ̃µµn → µ̃µµ, π̃ππn → π̃ππ in the sense that 1
M

∑M−1
m=0 ‖µ̃αm−387

µ̃αmn ‖1 + 1
M

∑M−1
m=0 maxs∈S ‖π̃αm(µ̃αm,W )− π̃αmn (µ̃αm,Wn )‖1 → 0,388

Q̃(µ̃µµn, π̃ππn(µ̃µµn))→ Q̃(µ̃µµ, π̃ππ(µ̃µµ)).

From (4.8) and (3.13),389

|Q̃(µ̃µµn, π̃ππn)− Q̃(µ̃µµ, π̃ππ)|

≤
∣∣∣R̃(µ̃µµ, π̃ππ(µ̃µµ)) + sup

π̃ππ′∈Π̃ΠΠM

∞∑

t=1

γtR̃(µ̃µµt, π̃ππ
′(µ̃µµt))− R̃(µ̃µµn, π̃ππn(µ̃µµn)) + sup

π̃ππ′∈Π̃ΠΠM

∞∑

t=1

γtR̃(µ̃µµn,t, π̃ππ
′(µ̃µµn,t))

∣∣∣

≤
∣∣∣R̃(µ̃µµ, π̃ππ(µ̃µµ))− R̃(µ̃µµn, π̃ππn(µ̃µµn))

∣∣∣+ sup
π̃ππ′∈Π̃ΠΠM

∞∑

t=1

γt
∣∣∣R̃(µ̃µµn,t, π̃ππ

′(µ̃µµn,t))− R̃(µ̃µµt, π̃ππ
′(µ̃µµt))

∣∣∣

≤ Lr ·
1

M

M−1∑

m=0

‖µ̃αm,W − µ̃αm,Wn ‖1 +Mr ·
1

M

M−1∑

m=0

‖µ̃αm − µ̃αmn ‖1dα

+Mr ·
1

M

M−1∑

m=0

max
s∈S
‖π̃α(µ̃αm,W )− π̃αn(µ̃αm,Wn )‖1dα

+ sup
π̃ππ′∈Π̃ΠΠM

∞∑

t=1

γt ·
((
Lr + LΠ

)
· 1

M

M−1∑

m=0

‖µ̃αm,Wt − µ̃αm,Wn,t ‖1 +Mr ·
1

M

M−1∑

m=0

‖µ̃αmt − µ̃αmn,t ‖1
)

≤
(
Lr +Mr

)
· 1

M

M−1∑

m=0

‖µ̃αm − µ̃αmn ‖1 +Mr ·
1

M

M−1∑

m=0

max
s∈S
‖π̃α(µ̃αm,W )− π̃αn(µ̃αm,Wn )‖1dα

+ sup
π̃ππ′∈Π̃ΠΠM

∞∑

t=1

γt ·
(
Lr + LΠ +Mr

)
· 1

M

M−1∑

m=0

‖µ̃αmt − µ̃αmn,t ‖1.

20

                  



By induction, we obtain390

1

M

M−1∑

m=0

‖µ̃αmt − µ̃αmn,t ‖1

=
1

M

M−1∑

m=0

∑

s′∈S

∣∣∑

s∈S

∑

a∈A
Pαm(s′|s, a, µ̃αm,Wt−1 )µ̃αmt−1(s)π̃(α|s, µ̃αm,Wt−1 )

−
∑

s∈S

∑

a∈A
Pαm(s′|s, a, µ̃αm,Wn,t−1 )µ̃αmn,t−1(s)π̃(α|s, µ̃αm,Wn,t−1 )

∣∣

≤ (LP + LΠ + 1) · 1

M

M−1∑

m=0

‖µ̃αt−1 − µ̃αn,t−1‖1

≤ . . . ≤ (LP + LΠ + 1)(t−1) 1

M

M−1∑

m=0

‖µ̃α1 − µ̃αn,1‖1.

Therefore, if γ · (1 + LP + LΠ) < 1, then391

|Q̃(µ̃µµn, π̃ππn)− Q̃(µ̃µµ, π̃ππ)| ≤ C
( 1

M

M−1∑

m=0

‖µ̃αm − µ̃αmn ‖1 +
1

M

M−1∑

m=0

max
s∈S
‖π̃αm(µ̃αm,W )− π̃αmn (µ̃αm,Wn )‖1

)
.

where C is a constant depending on Lr,Mr, LP , LΠ. 2392

Now we prove Theorem 3.8.393

Proof of Theorem 3.8 By Lemma 4.4, along with the compactness of Π̃ΠΠM , there exists394

π̃ππ∗ ∈ Π̃ΠΠM such that π̃ππ∗ ∈ arg max
π̃ππ∈Π̃ΠΠM

Q(µ̃µµ, π̃ππ). By Lemma 4.3, there exists an optimal policy395

ensemble π̃ππ∗ ∈ Π̃ΠΠM . 2396

4.3. Proof of Theorem 3.9397

We first prove the following Lemma, which shows that GMFC and block GMFC become398

increasingly close to each other as the number of blocks becomes larger.399

Lemma 4.5 Under Assumptions 3.3, 3.4 and 3.6, we have400

M∑

m=1

∫

(m−1
M

,m
M

]
‖µα,Wt − µ̃αm,Wt ‖1dα ≤

[
(1 + LP + LΠ)t − 1

] L̃Π + L̃P + 2(LP + LΠ)LW
M

+
2LW
M

,

M∑

m=1

∫

(m−1
M

,m
M

]
‖µαt − µ̃αmt ‖1dα ≤

[
(1 + LP + LΠ)t − 1

] L̃Π + L̃P + 2(LP + LΠ)LW
M

.
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Proof of Lemma 4.5

M∑

m=1

∫

(m−1
M

,m
M

]
‖µα,Wt − µ̃αm,Wt ‖1dα (4.9)

≤
M∑

m=1

∫

(m−1
M

,m
M

]
‖µα,Wt − µαm,Wt ‖1dα+

1

M

M∑

m=1

‖µαm,Wt − µ̄αm,Wt ‖1

+
1

M

M∑

m=1

‖µ̄αm,Wt − µ̃αm,Wt ‖1,

where µ̄αm,W := 1
M

∑M
m′=1W (αm, αm′)µ

αm′ .401

By the definition of µα,Wt , µαm,Wt in (2.10), µ̃αm,Wt in (3.12) and µ̄αm,W , together with the402

Lipschitz continuity of W in Assumption 3.3,403

M∑

m=1

∫

(m−1
M

,m
M

]
‖µα,Wt − µαm,Wt ‖1dα ≤

M∑

m=1

∫

(m−1
M

,m
M

]
‖µαt − µαmt ‖1dα+

LW
M

, (4.10)

1

M

M∑

m=1

‖µαm,Wt − µ̄αm,Wt ‖1 ≤ LW
M

, (4.11)

1

M

M∑

m=1

‖µ̄αm,Wt − µ̃αm,Wt ‖1 ≤ 1

M

M∑

m=1

‖µαmt − µ̃αmt ‖1. (4.12)

Plugging these into (4.9),404

M∑

m=1

∫

(m−1
M

,m
M

]
‖µα,Wt − µ̃αm,Wt ‖1dα ≤ At +

2LW
M

, (4.13)

where At :=
∑M

m=1

∫
(m−1
M

,m
M

] ‖µαt − µ
αm
t ‖1dα+ 1

M

∑M
m=1 ‖µαmt − µ̃αmt ‖1.405

On the other hand,406

M∑

m=1

∫

(m−1
M

,m
M

]
‖µαt − µ̃αmt ‖1dα (4.14)

≤
M∑

m=1

∫

(m−1
M

,m
M

]
‖µαt − µαmt ‖1dα+

1

M

M∑

m=1

‖µαmt − µ̃αmt ‖1 = At. (4.15)

Therefore, it is enough to estimate At. We next estimate At+1 by an inductive way. Note407
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that A0 = 0.408

At+1

=
M∑

m=1

∫

(m−1
M

,m
M

]
‖µαt+1 − µαmt+1‖1dα+

1

M

M∑

m=1

‖µαmt+1 − µ̃αmt+1‖1

=

M∑

m=1

∫

(m−1
M

,m
M

]

∥∥∥
∑

s∈S

∑

a∈A

(
Pα(·|s, µα,Wt , a)πα(a|s, µα,Wt )µαt (s)

−Pαm(·|s, a, µαm,Wt )µαmt (s)παm(a|s, µαm,Wt )
)∥∥∥

1
dα

+
1

M

M∑

m=1

∥∥∥
∑

s∈S

∑

a∈A

(
Pαm(·|s, µαm,Wt , a)παm(a|s, µαm,Wt )µαmt (s)

−Pαm(·|s, a, µ̃αm,Wt )µ̃αmt (s)π̃αm(a|s, µ̃αm,Wt )
)∥∥∥

1

≤
M∑

m=1

∫

(m−1
M

,m
M

]

(
(LP + LΠ) · ‖µα,Wt − µαm,W ‖1 +

L̃Π

M
+ ‖µαt − µαmt ‖1

)
dα

+
1

M

M∑

m=1

(
(LP + LΠ) · ‖µαm,Wt − µ̃αm,W ‖1 +

L̃P
M

+ ‖µαmt − µ̃αmt ‖1
)

≤ (1 + LP + LΠ)At + (L̃Π + L̃P + 2(LP + LΠ)LW )
1

M
,

where the second equality is from (3.4) and (3.14), and we use Assumptions 3.3, 3.4 and 3.6409

in the third inequality, and we use (4.10)-(4.12) in the last inequality.410

By induction, we have411

At+1 ≤
[
(1 + LP + LΠ)t − 1

] L̃Π + L̃P + 2(LP + LΠ)LW
M

.

2412

Based on Lemma 4.5, we have the following Proposition.413

Proposition 4.6 Assume Assumptions 3.3, 3.4, 3.5, 3.6, and γ · (LP +LΠ + 1) < 1. Then414

we have for any µ ∈ P(S)415

sup
πππ∈ΠΠΠ

∣∣J̃M (µ,πππ)− J(µ,πππ)
∣∣→ 0, asM → +∞, (4.16)

where J̃M and J are given in (4.7) and (2.11), respectively.416

Proof of Proposition 4.6 Recall from (3.12) that417

J̃M (µ, π̃ππ) =
∞∑

t=0

γtR̃(µ̃µµt, π̃ππ(µ̃µµt)),
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subject to µ̃αmt+1 = Φ̃ΦΦ
αm

(µ̃αmt , π̃αm), t ∈ N+, µ̃α0 ≡ µ, and µ̃αm,Wt given in (3.12).418

J(µ,πππ) =
∞∑

t=0

γtR(µµµt,πππ(µµµt)),

subject to µαt+1 = ΦΦΦα(µαt , π
α), t ∈ N+, µα0 ≡ µ, and µα,Wt given in (2.10). Since π̃ππ :=419

(π̃αm)m∈[M ] ∈ Π̃ΠΠM can be viewed as a piecewise-constant projection of πππ ∈ ΠΠΠ onto Π̃ΠΠM .420

Then,421

sup
πππ∈ΠΠΠ

∣∣J̃M (µ,πππ)− J(µ,πππ)
∣∣

≤ sup
πππ∈ΠΠΠ

∞∑

t=0

γt
∣∣∣R̃(µ̃µµt, π̃ππ(µ̃µµt))−R(µµµt,πππ(µµµt))

∣∣∣

≤ sup
πππ∈ΠΠΠ

∞∑

t=0

γt
∣∣∣R̃(µ̃µµt, π̃ππ(µ̃µµt))−R(µµµt, π̃ππ(µµµt))

∣∣∣+ sup
πππ∈ΠΠΠ

∞∑

t=0

γt
∣∣∣R(µµµt, π̃ππ(µµµt))−R(µµµt,πππ(µµµt))

∣∣∣

:= I + II.

In terms of the term I, we first estimate
∣∣∣R̃(µ̃µµt, π̃ππ)−R(µµµt, π̃ππ)

∣∣∣:422

∣∣∣R̃(µ̃µµt, π̃ππ(µ̃µµt))−R(µµµt, π̃ππ(µµµt))
∣∣∣

=

∣∣∣∣
M∑

m=1

∫

(m−1
M

,m
M

]

∑

s∈S

∑

a∈A
rαm(s, a, µ̃αm,Wt )µ̃αmt (s)π̃αm(a|s, µ̃αm,Wt )dα

−
M∑

m=1

∫

(m−1
M

,m
M

]

∑

s∈S

∑

a∈A
rα(s, a, µα,Wt )µαt (s)π̃αm(a|s, µα,Wt )dα

∣∣∣∣

≤
∣∣∣∣
M∑

m=1

∫

(m−1
M

,m
M

]

∑

s∈S

∑

a∈A

(
rαm(s, a, µ̃αm,Wt )− rα(s, a, µα,Wt )

)
µ̃αmt (s)π̃αm(a|s, µ̃αm,Wt )dα

+

∣∣∣∣
M∑

m=1

∫

(m−1
M

,m
M

]

∑

s∈S

∑

a∈A
rα(s, a, µα,Wt )

(
µ̃αmt (s)− µαt (s)

)
π̃αm(a|s, µ̃αm,Wt )dα

∣∣∣∣

+

∣∣∣∣
M∑

m=1

∫

(m−1
M

,m
M

]

∑

s∈S

∑

a∈A
rα(s, a, µα,Wt )µ̃αt (s)

(
π̃αm(a|s, µ̃αm,Wt )− π̃αm(a|s, µα,Wt )

)
dα

∣∣∣∣

≤ Lr ·
M∑

m=1

∫

(m−1
M

,m
M

]
‖µα,Wt − µ̃αm,Wt ‖1dα+

L̃r
M

+Mr ·
M∑

m=1

∫

(m−1
M

,m
M

]
‖µαt − µ̃αmt ‖1dα+MrLΠ ·

M∑

m=1

∫

(m−1
M

,m
M

]
‖µα,Wt − µ̃αm,Wt ‖1dα.

By Lemma 4.5,423

I ≤ C(γ, LΠ, LP , LW , Lr,Mr)

M
.
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For the term II,424

sup
πππ∈ΠΠΠ

∞∑

t=0

γt
∣∣∣R(µµµt, π̃ππ(µµµt))−R(µµµt,πππ(µµµt))

∣∣∣

≤ sup
πππ∈ΠΠΠ

∞∑

t=0

γtMr

M∑

m=1

∫

(m−1
M

,m
M

]
max
s∈S
‖πα − παm‖1dα

+ sup
πππ∈ΠΠΠ

∞∑

t=0

γtMr

M∑

m=1

∫

(m−1
M

,m
M

]
‖µα,Wt − µ̃αm,Wt ‖1dα

≤ C(γ, LΠ, LP , LW , Lr,Mr)

M
.

2425

Proof of Theorem 3.9 Suppose that π̃ππ∗ ∈ Π̃ΠΠM ⊂ ΠΠΠ and (π1,∗, . . . , πN,∗) ∈ ΠN are optimal426

policies of the problems (4.7) and (2.7), respectively. From Proposition 4.6, for any ε > 0,427

there exists sufficiently large Mε > 0428

|J̃Mε(µ, π̃ππ∗)− J(µ, π̃ππ∗)| ≤ ε

3
,

where by (3.8), πππN,∗ :=
∑N

i=1 π
i,∗1α∈( i−1

N
, i
N

].429

From Theorem 3.7, for any ε > 0, there exists Nε such that for all N ≥ Nε430

|JN (µ, π̃1,∗, . . . , π̃N,∗)− J(µ, π̃ππ∗)| ≤ ε

3
, |JN (µ, π1,∗, . . . , πN,∗)− J(µ,πππN,∗)| ≤ ε

3
.

Then we have431

JN (µ, π̃1,∗, . . . , π̃N,∗)− JN (µ, π1,∗, . . . , πN,∗)

≥ JN (µ, π̃1,∗, . . . , π̃N,∗)− J(µ, π̃ππ∗)︸ ︷︷ ︸
I1

+ J(µ, π̃ππ∗)− J̃Mε(µ, π̃ππ
∗)︸ ︷︷ ︸

I2

+ J̃Mε(µ, π̃ππ∗)− J̃Mε(µ,πππN,∗)︸ ︷︷ ︸
I3

+ J̃Mε(µ,πππN,∗)− JN (µ, π1,∗, . . . , πN,∗)︸ ︷︷ ︸
I4

≥ −ε
3
− ε

3
− ε

3
= −ε.

where I3 ≥ 0 due to the optimality of π̃ππ∗ for ṼMε . This means that the optimal policy of432

block GMFC provides an ε-optimal policy for the multi-agent system with (π̃∗1, . . . , π̃
∗
N ) :=433

ΓN (π̃ππ∗). 2434

5. Experiments435

In this section, we provide an empirical verification of our theoretical results, with two436

examples adapted from existing works on learning MFGs [16, 10] and learning GMFGs [15].437
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5.1. SIS Graphon Model438

We consider a SIS graphon model in [16] under a cooperative setting. In this model,439

each agent α ∈ I shares a state space S = {S, I} and an action space A = {C,NC}, where440

S is susceptible, I is infected, C represents keeping contact with others, and NC means441

keeping social distance. The transition probability of each agent α is represented as follows442

Pα(st+1 = I|st = S, at = C, µα,Wt ) = β1µ
α,W
t (I),

Pα(st+1 = I|st = S, at = NC,µα,Wt ) = β2µ
α,W
t (I),

Pα(st+1 = S|st = I, µα,Wt ) = δ,

where β1 is the infection rate with keeping contact with others, β2 is the infection rate443

under social distance, and δ is the fixed recovery rate. We assume 0 < β2 < β1, meaning444

that keeping social distance can reduce the risk of being infected. The individual reward445

function is defined as446

rα(s, µα,Wt , a) = −c11{I}(s)− c21{NC}(a)− c31{I}(s)1{C}(a),

where c1 represents the cost of being infected such as the cost of medical treatment, c2447

represents the cost of keeping social distance, and c3 represents the penalty of going out if448

the agent is infected.449

In our experiment, we set β1=0.8, β2=0, δ = 0.3 for the transition dynamics and c1=2,450

c2=0.3, c3 = 0.5 for the reward function. The initial mean field µ0 is taken as the uniform451

distribution. We set the episode length to 50.452

5.2. Malware Spread Graphon Model453

We consider a malware spread model in [10] under a cooperative setting. In this model,
let S = {0, 1, . . . ,K − 1}, K ∈ N, denote the health level of the agent, where st = 0 and
st = K − 1 represents the best level and the worst level, respectively. All agents can take
two actions: at = 0 means doing nothing, and at = 1 means repairing. The state transition
is given by

st+1 =

{
st + b(K − st)χtc, if at = 0,

0, if at = 1,

where χt, t ∈ N are i.i.d. random variables with a certain probability distribution. Then454

after taking action at, agent α will receive an individual reward455

rα(st, µ
α,W
t , at) = −(c1 + 〈µα,Wt 〉)st/K − c2at.

Here considering the heterogeneity of agents, we useW (α, β) to denote the importance effect456

of agent β on agent α. 〈µα,Wt 〉 :=
∫
β∈I

∑
s∈S sW (α, β)µβt (s)dβ is the risk of being infected457

by other agents and c2 is the cost of taking action at.458

In our experiment, we setK=3, c1=0.3, and c2=0.5. In addition, to stabilize the training459

of the RL agent, we fix χt to a static value, i.e., 0.7. In this model, we set the episode length460

to 10.461
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5.3. Performance of N-agent GMFC on Multi-Agent System462

For both models, we use PPO [47] to train the block GMFC agent in the infinite-agent463

environment and obtain the policy ensembles and further use Algorithm 2 to deploy them464

in the finite-agent environment. We test the performance of N-agent GMFC with 10 blocks465

to different numbers of agents, i.e., from 10 to 100. For each case, we run 1000 times of466

simulations and show the mean and standard variation (Green shadows in Figure 1 and467

Figure 2) of the mean episode reward. We can see that in both scenarios and for different468

types of graphons, the mean episode rewards of the N-agent GMFC become increasingly469

close to that of block GMFC as the number of agents grows. (See Figure 1 and Figure 2).470

This verifies our theoretical findings empirically.471

Figure 1: Experiments for different graphons in SIS finite-agent environment

Figure 2: Experiments for different graphons in Malware Spread finite-agent environment

5.4. Comparison with Other Algorithms472

For different types of graphons, we compare our algorithm N-agent GMFC with three473

existing MARL algorithms, including two independent learning algorithms, i.e., independent474

DQN [40], independent PPO [47] and a powerful centralized-training-and-decentralized-475

execution(CTDE)-based algorithm QMIX [46]. We test the performance of those algorithms476

with different numbers of blocks, i.e., 2, 5, 10, to the multi-agent systems with 40 agents.477

The results are reported in Table 1 and Table 2.478

In the SIS graphon model, N-agent GMFC shows dominating performance in most cases479

and outperforms independent algorithms by a large margin. Only QMIX can reach compa-480

rable results. And in the malware spread graphon model, N-agent GMFC outperforms other481

algorithms in more than half of the cases. Only independent DQN has comparable perfor-482

mance in this environment. And we can see that in both environments, the performance483
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gap between N-agent GMFC and other MARL algorithms is shrinking as the number of484

blocks goes larger. This is mainly because the action space of block GMFC increases more485

quickly than MARL algorithms as the block number increases. And it is hard to train RL486

agents when the action space is too large.487

Beyond the visible results shown in Tables 1 and 2, when the number of agents N grows488

larger, classic MARL methods become infeasible because of the curse of dimensionality489

and the restriction of memory storage, while N-agent GMFC is trained only once and490

independent of the number of agents N , hence is easier to scale up in a large-scale regime491

and enjoys a more stable performance. We can see that N-agent GMFC shows more stable492

results when N increases as shown in Figure 1 and Figure 2.493

Table 1: Mean Episode Reward for SIS with 40 agents

Graphon Type M Algorithm

N-agent GMFC I-DQN I-PPO QMIX

Erdős Rényi
2 -15.37 -17.58 -20.63 -20.51
5 -15.74 -16.17 -20.42 16.94
10 -15.67 -17.55 -21.38 -14.45

Stochastic Block
2 -13.58 -16.05 -18.38 -17.69
5 -13.67 -15.91 -20.13 -13.79
10 -13.57 -15.52 -14.87 -13.86

Random Geometric
2 -12.45 -17.93 -14.82 -14.52
5 -9.82 -12.81 -12.99 -10.84
10 -10.52 -11.68 -12.66 -12.60

Table 2: Mean Episode Reward for Malware Spread with 40 agents

Graphon Type M Algorithm

N-agent GMFC I-DQN I-PPO QMIX

Erdős Rényi
2 -5.21 -5.11 -5.31 -6.05
5 -5.21 -5.30 -5.26 -6.13
10 -5.21 -5.14 -5.27 -5.21

Stochastic Block
2 -5.16 -5.21 -5.37 -5.88
5 -5.10 -5.19 -5.31 -5.70
10 -5.09 -5.05 -5.28 -5.27

Random Geometric
2 -5.02 -5.21 -5.27 -5.35
5 -4.85 -5.03 -5.04 -5.05
10 -4.82 -4.83 -5.14 -4.83

5.5. Implementation Details494

We use three graphons in our experiments: (1) Erdős Rényi: W (α, β) = 0.8; (2) Stochas-495

tic block model: W (α, β) = 0.9, if 0 6 α, β 6 0.5 or 0.5 6 α, β 6 1, W (α, β) = 0.4,496
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otherwise; (3) Random geometric graphon: W (α, β) = f(min(|β − α|, 1 − |β − α|)), where497

f(x) = e−
x

0.5−x .498

For the RL algorithms, we use the implementation of RLlib [36] (version 1.11.0, Apache-499

2.0 license). For PPO used to learn an optimal policy ensemble in block GFMC, we use a500

64-dimensional linear layer to encode the observation and 2-layer MLPs with 256 hidden501

units per layer for both value network and actor network. For independent DQN and502

independent PPO, we use the default weight-sharing model with 64-dimensional embedding503

layers. We train the GMFC PPO agent for 1000 iterations, and other three MARL agents504

for 200 iterations. The specific hyper-parameters are listed in Table 3.505

Table 3: RL Algorithm Settings

Algorithms GMFC PPO I-DQN I-PPO QMIX

Learning rate 0.0005 0.0005 0.0001 0.00005
Learning rate decay True True True False
Discount factor 0.95 0.95 0.95 0.95
Batch size 128 128 128 128
KL coefficient 0.2 - 0.2 -
KL target 0.01 - 0.01 -
Buffer size - 2000 - 2000
Target network update frequency - 2000 - 1000

6. Conclusion506

In this work, we have proposed a discrete-time GMFC framework for MARL with nonuni-507

form interactions and heterogeneous reward functions and transition functions across the508

agents on dense graphs. Theoretically, we have shown that under suitable assumptions,509

GMFC approximates MARL well with approximation error of order O( 1√
N

). To reduce the510

dimension of GMFC, we have introduced block GMFC by discretizing the graphon index511

and shown that it also approximates MARL well. Empirical studies on several examples512

have verified the plausibility of the GMFC framework. For future research, we wish to ex-513

plore more on how to extract the optimal policy of cooperative MARL without the simulator514

for population state distribution ensemble and to extend our framework to heterogeneous515

MARL on sparse graphs.516
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